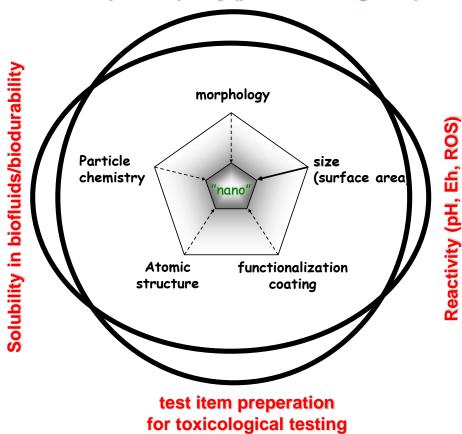


Methodologies for nanomaterial characterisation in complex *in vitro* and human systems - Solubility, Dissolution and Reactivity Testing


<u>KA Jensen</u> National Research Centre for the Working Environment (NRCWE) (Contact: kaj@nrcwe.dk)

Y. Kembouche, A. Kofoed-Jørgensen (NRCWE, Copenhagen, DENMARK) E. Holmfred, K. Loeschner (DTU, Lyngby, DENMARK) J.G. Keller, W. Wohlleben (BASF, Ludwigshafen, GERMANY)

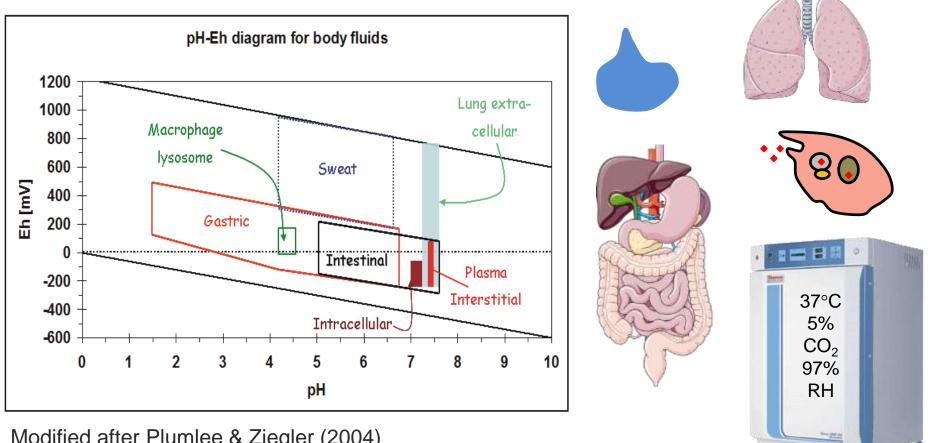
Data requirements for understanding toxicology, grouping, read-across and risk

assessment.

adsorption capacity (protein and organics)

24.10.2019

OECD WPMNM list of end-points


- Molecular structure/crystalline phase
- Composition/purity
- Surface chemistry (coating/functionalization)
- Size (primary/aggregate/agglomerate)
- Crystallite size
- Morphology (nano-object)
- Specific surface area (and relative density)
- Porosity
- Zeta-potential
- (Photo-)catalytic activity
- Redox potential
- Radical formation capacity
- Water-solubility/dispersability
- Octanol-water coefficient
- Pour density
- Dustiness
- Other when relevant

OECD ENV/JM/MONO(2010)46

PATROLS WORKSHOP (PARIS)

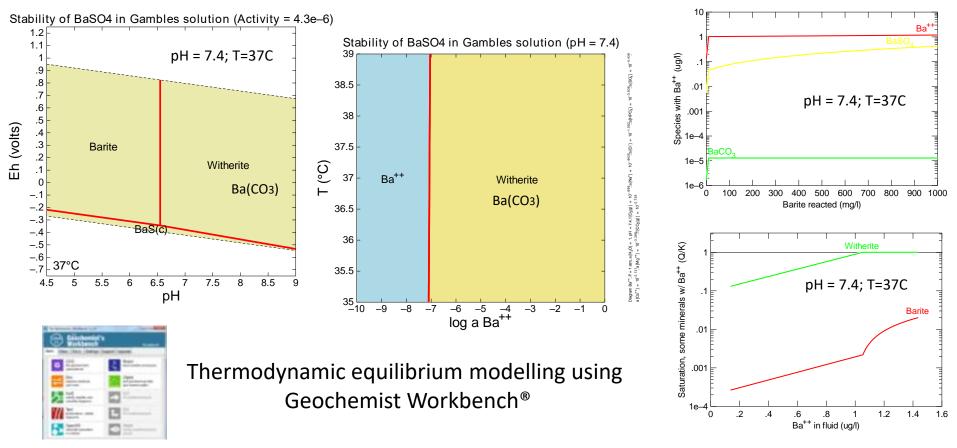
Reliable Data requires **Analysis** under **Controlled** and **Relevant** conditions!

Modified after Plumlee & Ziegler (2004)

PATROLS WORKSHOP (PARIS)

24.10.2019

Outline

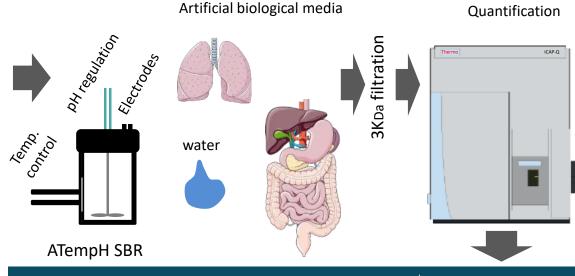

- 1) Chemical Reaction Modelling
- 2) Batch reactor test system
- 3) Continuous flow test system
- 4) Experimental simulation of test method

12.09.2019

5) Applicability for interpretations and risk assessment

1) Modelling: Pre- and Post-test assessment of dissolution, transformation and reactivity (Example: BaSO4 in Gambles solution)

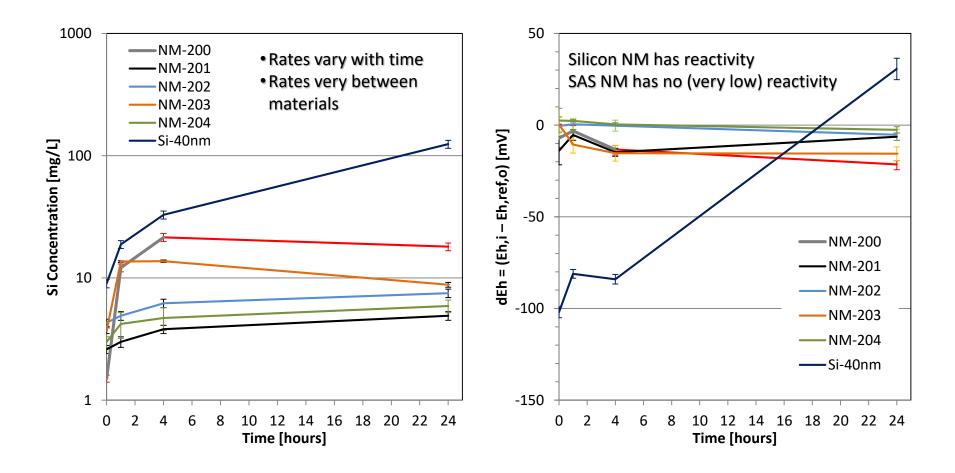
2) Atmosphere-Temperature-pH-controlled Stirred Batch Reactor System (Screening and short-term)



Calibration by P(ac) & NM-200 performance

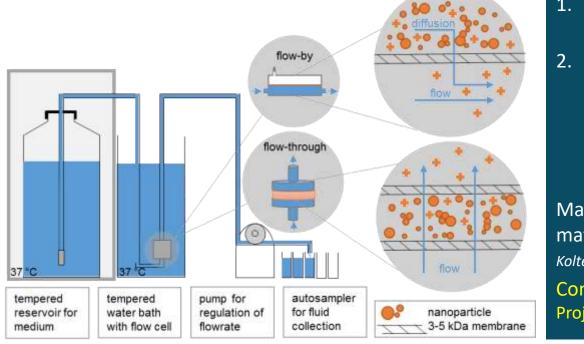
	Z _{ave}	σ	PDI	σ	
Average	252.7	13.7	0.384	0.038	
σ	24.9		0.079		
	Data from 24 partners				

NANOGENOTOX SOP (0.05% w/v BSA water EtOH pre-wetting)


- 1. Temporal dissolved fraction
- 2. Initial dissolution rates
- 3. Transformation by offline analysis

Data on metals, oxides, silicates, carbon based materials. Improvement on existing methods (e.g., TG-105 and GD29) Intralaboratory method validation for NM on-going in OECD WNT Project 1.5 (supported by PATROLS & GO4NANO)

Example: Dissolution and reactivity of silica and silicon NMs in Gambles solution (lung-lining)



PATROLS WORKSHOP (PARIS)

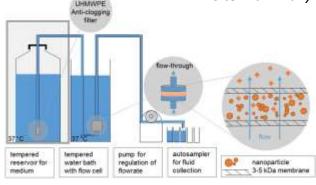
3) Temperature-controlled Continuous Flow-By or Through Systems (long-term rate determination)

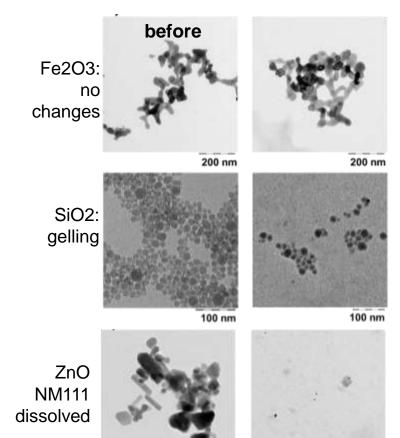
- Originally developed to understand & predict mineral fiber biodissolution (1995)
- Extensive documentation in scoentific literature
- Described for nanomaterials in ISO TR 19057 (2017)

1. Long-term dissolution rates from ion concentrations (ICP-MS)

2. Assess transformation on remaining solids by offline analysis

Checked on GIT, lysosomal, Lung lining, freshwater. Matches in vivo kinetics on benchmark materials *Koltermann-Jülly et al., Nanoimpact (2018)* **Considered for ongoing OECD WNT Project 1.5.**





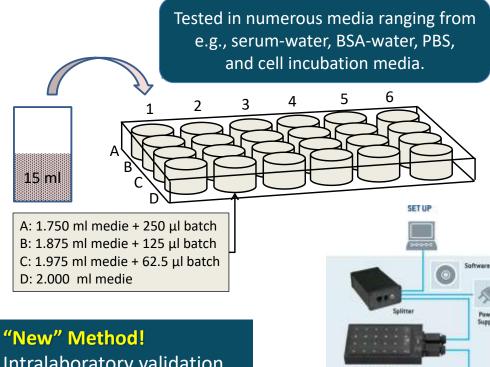
Example: Dissolution rates and transformation of 5 different NMs in phagolysosomal fluids (pH4.5)

	Rate [ng/cm²/h]	Half-time [days]
CeO ₂ NM-212	0.059	2,880
TiO ₂ NM-105	0.056	1,440
SiO ₂ NM-200	0.58	41
BaSO₄ NM-220	10	5.8
ZnO NM-111	177	0.7

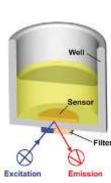
Koltermann-Jülly et al., Nanoimpact (2018)

200 nm

1 µm

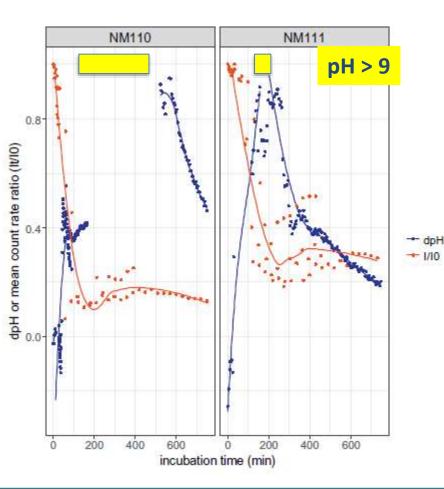


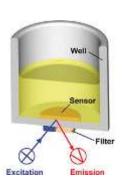
12.09.2019

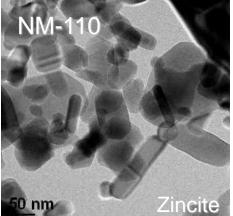

PATROLS Workshop (PARIS)

5) Sensor-Dish Reader) pH- and O₂ Reactivity and Dissolution Testing (simukating *in vitro* systems)

Intralaboratory validation demonstration completed Jørgensen et al. (in prep.) Ongoing: expanding data and knowledge


Monitor


pH = sensor (calculate dpH) O_2 = sensor (calculate dO₂) Liquid sampling for solubility testing 3kDa filtration in centrifuge


Solubility and dissolution by chemical analyses of dissolved ion concentrations Assess transformation on remaining solids by offline analysis

Example: Dissolution and reactivity of two ZnO NMs in cHAMs F12 (in vitro)

Mast
2
_
<u> </u>
ø
_
Temmerman
σ
~
_
_
Ð
Ð
Ē
De
\cap
_
—
•
Δ.
-
TEM:
111
_

Sampling time (h)	Zn (total, µg/L)				
	NM-110	σ	NM-111	σ	
0 ⁿ	872.6	22.6	864.3	19.0	
0.25	5802.3	67.5	5177.4	148.9	
1	5978.4	162.2	5595.2	22.0	
2	5956.5	101.3	5827.5	139.4	
4	6154.7	131.4	6056.2	242.0	
24	7431.1	373.5	8265.2	178.0	
cHam's F12	49.4	14.6	41.1	7.5	

^a Estimated concentration at t = 0 h.

Da Silva et al. Tox In Vitro (2019)

Applicability for toxicological interpretations and risk assessment?

- Analysis of dissolution and reactivity of test materials under well-controlled relevant conditions can provide:
 - Important results for prediction of test material behaviour in biological test systems
 - Important information for understanding and interpretation of toxicological test results
 - Important information for grouping, read-across and QSAR
- Proposed test methods should be possible to implement in most laboratories as they are further refinements and developments of previously established methods
- Intralaboratory (ongoing) and interlaboratory (forthcoming) validation on NMs remain, but are planned allow establishment of a GD as part of OECD project 1.5 (currently no other similar use of the Sensor Dish Reader[®] System).
- Further demonstration of application of data in case studies and authentic use scenarios remains.

