

Methodologies for characterizing complex in vitro/in vivo/ecotox systems

Dr. Jorge Mejia University of Namur September the 12th, 2019

www.patrols-h2020.eu

SIAM Platform - unique facilities

ANALYSIS

Tandetron Linear Accelerator (ALTAÏS) – Characterization IBA non-destructive and quantitative elemental depth (10nm to 1µm) profiles (H quantification).

XPS and ToF-SIMS

Chemical and molecular composition at surfaces Chemical mapping (2D) and profiling (3D) Polymers depth profiling

SYNTHESIS & IRRADIATION

Tandetron Linear Accelerator (ALTAÏS) - Irradiation

Radiobiology station (cells irradiation) Implantation station Vacuum deposition chambers

Plasma sputtering Plasma functionalization

Ion Beam Analysis - Particle-Induced X-Ray Emission (PIXE)

Benefits of PIXE

SEM-EDX

PIXE at UNamur since 1970.

- Detection from Na to U.
- Sensitivity at **wt.ppm level** for most elements.
- PIXE is much more sensitive to trace elements than the electron micro-probe, no Bremsstrahlung
- Analysis can be carried out in air or in vacuum.
- Generally no need of sample preparation.
- Absolute quantification (need to compare to standards).
- The **accuracy** of the technique is **5-10%**.

PIXE / μ-PIXE: Applications to NanoSafety

MNs)

Time (day) O. Lozano, J.L. Colaux et al., "Fast, asymmetric and non-homogeneous clearance of SiC nano-aerosol after 5 day exposure using ion beam analysis" Nanomedicine (2017)

20

Zebrafish eggs samples (LU)

Exposure to TiO2 NPs (NM-105) in ecotox media (M7, egg water)

Translocation experiments (apical, basal, membrane, cells). Samples provided by AMI.

24.10.2019

Liquid sample and configuration settings

24.10.2019

Liquid sample results (AMI)

		10.1			
		[Ba]	Unc.	LOD	
	sample	wt.ppm	Wt.ppm	wt.ppm	
UNamur	2mg_BaSO4	612,219	39,251	1,227	
UNamur	0.1mg_BaSO4	11,301	1,639	2,861	
UNamur	0.01mg_BaSO4	296,200	94,441	2,659	
UNamur	0.001mg_BaSO4			1,664	
PATROLS	2mg_BaSO4	561,051	36,446	2,042	
PATROLS	0.1mg_BaSO4	29,721	3,118	2,541	
PATROLS	0.01mg_BaSO4	4,672	2,317	2,733	
PATROLS	0.001mg_BaSO4			2,691	

		[BaSO4]	Unc.		LOD
	sample	mg/ml	mg/ml		mg/ml
UNamur	2mg	1.708	;	0.1095	0.003
UNamur	0.1mg	0.031		0.0045	0.004
UNamur	0.01mg	0.277	,	0.0882	0.001
UNamur	0.001mg				0.002
PATROLS	2mg	1.266	;	0.0822	0.005
PATROLS	0.1mg	0.169		0.0178	0.014
PATROLS	0.01mg	0.021		0.0102	0.012
PATROLS	0.001mg				0.012

Uncertainty values are established from a bottom-up approach (uncertainty budget).

Measurement of liquid sample by IBA

Measurement of liquid sample by IBA

Top view

Side view

Some results NM-105 (TiO₂)

Conclusions so far

- Liquid samples measurements improved: minimal manipulation and small volumes (~50 μL).
- Improvements to the geometry are still possible. LOD reduced by a factor 2.
- Actual LOD is about 0,05 mg/mL, sample concentration is required for lower concentrations.
- Data from the NMs and also the matrix in a same run.
- Cross check on the NMs dispersion protocol (exposure concentrations).
- Low uncertainty values and potentially valuable data for simulation purposes.
- High potentiality for analyses of complex samples (in vitro/in vivo/ecotox, ...)

Perspectives

- A sample stability's study will be initiated soon.
- Liquid samples from partners are planned in the following weeks and months.
- Improve sample preparation for solid samples

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760813.

www.patrols-h2020.eu

web: siam.unamur.be

Values given are indicative or typical "best" values.

Different applications may have widely differing performances.

Possible primary beam energies and types are indicated. A wide variety may be used.

	SIMS	XTEM	SAM	GD-OES	XPS	la - Icp-Ms	IBA	
Primary beam	keV ions	~100 keV	~100 keV	plasma	X-rays	Pulsed	~3 MeV light ions	
	Cue un tra na al	Drive erry	Augen	i.aila I.a	Dhata		~30 MeV heavy ions	
Detected signal	ions	electrons in phase contrast	electrons	photons	electrons	ated ions	x-rays; Nuclear reaction products: scattered primaries, target recoils and γ-rays	
Destructive	Yes	Yes	Yes	Yes	Yes	Yes	No	
Depth resolution	2 nm	0.1 nm	2 nm	20 nm	2 nm	10 nm	2 nm	
Information depth	500 nm	100 nm	500 nm	50 µm	500 nm		15 µm	
Lateral resolution	50 nm	0.1 nm	2 nm	1 mm	3 µm	10 mm	500 nm	
Elemental Imaging	Yes	EELS, EDX	Yes	No	Yes	No	Yes	
Ambient analysis	No	No	No	No	No	Yes	Yes	
Sample preparation	No	Yes	UHV	No	UHV	No	No	
Quantitative	?	No	Yes	Yes	Yes	Yes	Yes	
Standards needed	Yes		Yes	Yes	Yes	Yes	No	
Elemental sensitivity	10 ⁻⁸	10-1	10-3	10-6	10-3	10 ⁻⁹	10-6	
Accuracy			10%	10%	5%	5%	1%	
Traceability					Yes	Yes	primary	
C. Jeynes & J.L. Colaux, "Thin film depth profiling by ion beam analysis", Analyst 141 (2016), 5944-5985.								

24.10.2019

Interactive Map of Accelerators in the World

The map view is optimized for internet Explorer. If the map is not loading in Chrome/Safari then please kindly refresh the page

Accelerator Knowledge Portal

International Atomic Energy Agency (IAEA) Vienna International Centre, PO Bax 100, A-1400 Vienna, Austria Telephone: (+431) 2600-0, Facsimile: (+431) 2600-7, E-mail: Official Mail

Copyright © 2019 International A