

In vivo benchmarking (chronic exposure studies)

- Ulla Vogel,
- National Reseach Centre for the Working Environment, Denmark

A number of nanomaterials are classified as carcinogenic or possibly carcinogenic by IARC

- Diesel exhaust particles (1)
- Carbon black (2B)
- Titanium dioxide nanoparticles (2B)
- Mitsui-7 carbon nanotubes (2B)

Nanosize increases the carcinogenic potency in chronic inhalation studies of TiO₂

	Air concentration	Total number of lung tumors	
Fine, rutile TiO ₂	250 mg/m ³	39/151 rats= 26%	Lee et al (1985)
Nano TiO ₂ (P25)	10 mg/m ³	32/100 rats= 32%	Heinrich (1995)

Fine, rutile TiO_2 did not cause cancer in 2-year inhalation studies at 5, 10 or 50 mg/m³ (Muhle et al 1991, Lee et al , 1985)

Cancer risk for ultrafine TiO2: 250 mg/m3 gives 26% cancer Divide by 22.5 to normalise to 45 years instead of 2 years Divide by 260 to normalise to 0.1% risk : 43 ug will give 1:1000 cancer risk

03-09-2019

Animal models of particle-induced lung cancer

- If no epidemiological evidence is avaiable, animal studies are used for risk assessment
- Only inhalation studies can be used for risk assessment
- 2 year chronic inhalation studies in rats (no cancer in mice and hamsters)
- We want to estimate human lung cancer risk (0.1% 0.001%) during 40 years of exposure based on groups of 50-100 rats exposed for 2 years (the detection limit is ca. 5% cancer), so the air concentrations should at least be 50 (5%/0.1%) x 20 (40 years/2 years) = 1000 fold higher in the animal studies
- Concern has been raised that impaired clearence (overload) will lead to over-estimation of cancer risk

Proposed key characteristics of carcinogens

Table 1. Key characteristics of carcinogens.

Characteristic	Examples of relevant evidence		
 Is electrophilic or can be metabolically activated 	Parent compound or metabolite with an electrophilic structure (e.g., epoxide, quinone), formation of DNA and protein adducts		
2. Is genotoxic	DNA damage (DNA strand breaks, DNA–protein cross-links, unscheduled DNA synthesis), intercalation, gene mutations, cytogenetic changes (e.g., chromosome aberrations, micronuclei)		Release of toxic substances; fx PAH, metals
 Alters UNA repair or causes genomic instability 	Alterations of UNA replication or repair (e.g., topoisomerase II, base-excision or double-strand break repair)	_	
Induces epigenetic alterations	DNA methylation histone modification microRNA expression		Surface-dependent
5. Induces oxidative stress	Oxygen radicals, oxidative stress, oxidative damage to macromolecules (e.g., DNA, lipids)		ROS generation
6. Induces chronic inflammation	Elevated white blood cells, myeloperoxidase activity, altered cytokine and/or chemokine production		Deposited total
Is immunosuppressive	Decreased immunosurveillance, immune system dysfunction	_<_	surface area
 Modulates receptor-mediated effects 	Receptor in/activation (e.g., ER, PPAR, AhR) or modulation of endogenous ligands (including hormones)	N	Shape (HARN)
9. Causes immortalization	Inhibition of senescence, cell transformation		
10. Alters cell proliferation, cell death or nutrient supply	Increased proliferation, decreased apoptosis, changes in growth factors, energetics and signaling pathways related to cellular replication or cell cycle control, angiogenesis		

Abbreviations: AhR, aryl hydrocarbon receptor; ER, estrogen receptor; PPAR, peroxisome proliferator-activated receptor. Any of the 10 characteristics in this table could interact with any other (e.g., oxidative stress, DNA damage, and chronic inflammation), which when combined provides stronger evidence for a cancer mechanism than would oxidative stress alone.

Smith MT EHP, 2016, PMID: 26600562

Mechanisms of action of diesel exhaust-induced cancer

- Both DEP and NO_x induces inflammation
- Diesel exhaust induces lung cancer in chronic inhalation studies in rats
- 2 year cancer studies in rats: Diesel Engine Exhaust induces lung cancer, but not filtered DEE. Thus, the particulate fraction is the carcinogenic component (Brightwell 1989).
- Both inhalation of DEE and instillation of DEP and DEP extracts induced mutations in lungs of mice (Hashimoto 2007)
- Evidence that both carbon core and DEP extracts (PAH, OC) contribute to carcinogenicity (Hashimoto, 2007, Heinrich 1995)
- PAH adduct formation and particle surface-induced ROS: primary genotoxicity and non-threshold effects

Cancer frequency in female rats in chronic inhalation studies; the carcinogenic potency is the same for 3 insoluble NMs (DEP, TiO₂ and CB)

Two year inhalation study in female (and male) rats exposed to diesel exhaust (DE), TiO_2 (P25) and CB (Printex90) (**Heinrich et al., 1995**).

	Average particle exposure (mg/m ³)					
	Clean air		DE		СВ	TiO ₂
Exposure concentration	0	0.8	2.5	7.0	11.6	10
Number of rats with tumours						
with benign tumours	1/217	0/198	11/200	22/100	39/100	32/100
without benign tumours			4/200	9/100	28/100	19/100

Table 4. Lung cancer incidence in rats exposed to diesel exhaust particles (DEP), carbon black (CB) and titanium dioxide (TiO_2) after 30 months (24 months of exposure followed by 6 months in clean air) (Heinrich et al. 1995).

Concern: the overload hypothesis

- Rats develop lung cancer after particle inhalation (2 years)
- Mice and hamsters do not
- Dose-dependent differences in particle retention
- Overload is seen for CB Printex90 at 50 mg/m³ (13 weeks)
- It is argued that rats therefore overestimate human cancer risk

TABLE 4 Particle Retention Half Times for Rats, Mice, and Hamsters following 13 Weeks of Exposure to Carbon Black

Nano-sized carbon black particle different exposure levels	s (P90) at Rats	Mice	Hamsters
HSCb, 1 mg/m HSCb, 7 mg/m HSCb, 50 mg/m	64 ^{<i>a</i>}	133 343	42 53
HSCb. ^{50 mg/m³}	No significant clearance	322	309

^aTimes are reported in days and were calculated from the retention curves using a two-parameter monoexponential decay function. For the mice, the half times were estimated from the retention curves in Figure 4b.

Elder et al, 2005, Tox Sci, 88(2) 614

03-09-2019

Clearence half-times for CB (Printex90), TiO₂ (P25) and diesel exhaust particles in the two year inhalation study

Exposure	Half-time of alveolar clearance (days)			
	3 mo	12 mo	18 mo	18 mo Recovery
Control Diesel soot 0.8 mg/m ³	61 94ª	72 121ª	96 221ª	93 p.d. ^b
Diesel soot, 2.5 mg/m ³	119 ^a	254 ^a	272ª	n.d. ^b
Diesel soot, 7.0 mg/m ³ Carbon black TiO ₂	330 ^a 2 44 ^a 208 ^a	541ª 368ª 403ª	687° 363° 357°	1068* 591* 368*

TABLE 9. Half-Times of Pulmonary Tracer Clearance (⁵⁹Fe)

^aSignificant at p < .01 (Dunnett's test).

^bn.d., Not determined.

Heinrich et al, 1995

Cumulative dose-response relationship between diesel exhaust exposure and lung cancer risk in three epidemiologial studies

Figure 1. Predicted exposure–response curve based on a log-linear regression model using RR estimates from three cohort studies of DEE and lung cancer mortality. Individual RR estimates [based on HRs reported by Garshick et al. (2012) or ORs reported by Silverman et al. (2012) and Steenland et al. (1998)] are plotted with their 95% CI bounds indicated by the whiskers. The shaded area indicates the 95% CI estimated based on the log-linear model. The insert presents the estimates of the intercept and beta slope factor, the SE of these estimates, and the associated *p*-values.

Vermeulen et al, 2014, EHP

Risk estimate for DEP based on epidemiological evidence

Table 1. Exposure-response estimates (InRR for a 1-µg/m³ increase in EC) from individual studies and the primary combined estimate based on a log-linear model.

Model ^a	Intercept	β (95%CI)
All studies combined	0.088	0.00098 (0.00055, 0.00141)
Silverman et al. (2012) only	-0.18	0.0012 (0.00053, 0.00187)
Steenland et al. (1998) only	-0.032	0.00096 (0.00033, 0.00159)
Garshick et al. (2012) only	0.24	0.00061 (-0.00088, 0.00210)

*Log-linear risk model (InRR = intercept + β × exposure). Exposure defined as EC in µg/m³-years.

Exposure setting	Average EC exposure (µg/m ³)	Excess lifetime risk through age 80 years (per 10,000)	The EU OEL for DEP is 50 ug/m ³
Worker exposed, age 20–65 years Worker exposed, age 20–65 years	25 10	689 -	
Worker exposed, age 20-65 years	1	17	
General public, age 5–80 years	0.8	21	

Based on linear risk function, $InRR = 0.00098 \times exposure$, assuming a 5-year lag, using age-specific (5-year categories) all cause and lung cancer mortality rates from the United States in 2009 as referent.

Vermeulen et al, EHP

03.09.2019

Comparable risk estimates from chronic inhalation studies and epidemiological studies on DEP

Diesel exhaust as a case:

Diesel exhaust (DE) cause cancer, filtered DE does not.

In chronic (2 year) inhalation studies in rats,

- 2.5 mg/m³ DE induced cancer in 5.5% of the exposed rats
- 40 years instead of 2
- 20:10 000 instead of 5.5%:
- 4.5 ug/m³ will induce 20 excess lung cancer cases
- Epidemiological meta-analysis: 1 ug/m³ induce 17 lung cancers:10 000 exposed
- the chronic inhalation in rats does not over-estimate lung cancer risk for DE

AOP: NP-induced lung cancer

Thank you for your attention!

