

Workshop on 3D cell culture models: lung, intestine and skin tissues

Adolphe Merkle Institute, Fribourg, Switzerland

July 8-9, 2019

3D Cell Culture

3D culture systems present an important advancement in cell culture techniques. Constructed from **cell lines or primary cells**, the 3D models simulate in vivo situations and present invaluable systems for fundamental and applicative cell biology research in vitro.

Target group

Are you experienced in basic 2D cell culture and looking for a solid basis and hands-on experience in 3D cell culture?

Join our two-day workshop on 3D cell culture models!

Content and Objectives

- Presentations on multicellular 3D models and their characterisation from an academic and industrial point of view.
- Receive hands-on training in the assembly of lung, intestine and skin models.

Application

- Free registration. Register here until June 20, 2019 (required).
 - Lunch, dinner, travel and accommodation costs to be covered by the applicants.
 - Active participation: Abstract submission (250 words) for oral presentations.

Theoretical part

- Assembly of multicellular 3D cell models of lung, intestine and skin tissues
- Tissues include both primary cells and cell
- Culture at Air-Liquid interface.
- Model characterisation: morphology, barrier integrity and biological responses.
- Hazard studies with 3D cell models, including exposures to particles.

Practical part

- Isolation and differentiation of primary immune cell.
- Seeding of 3D cell culture models.
- Model characterisation includes:
 - Microscopy: phase contrast and confocal laser scanning microscope, including life cell imaging.
 - Measuring barrier integrity with TEER.
 - Exposure techniques at Air-Liquid interface.

Speakers

- Prof. Dr. Barbara Rothen-Rutishauser, the establisher of an advanced human 3D lung model, expert in application of 3D cell models for hazard assessment in vitro.
 - Lonza Pharma and Biotech Bioscience Solutions, presentation and practical workshop on 'Construction of a Full Thickness Skin Model Using RAFT™ 3D Cell Culture System'.
 - Post-doctoral scientists and PhD students, experienced in advanced cell culture techniques.

Location

The workshop will be held in Fribourg, a picturesque medieval town in western Switzerland, at the Adolphe Merkle Institute.

For more information visit: https://www.ami.swiss/

Day 1: July 8, 2019

Day 2: July 9, 2019

audience.

9.00-9.30	Arrival and registration (coffee)		9.00-12.30	Practical part: hands-on training
10.00-11.30	Theoretical part			in cell culture laboratory
	Prof. Dr. B. Rothen-Rutishauser		12.30-13.30	Lunch
11.30-13.00	Lunch and tour of the institute	V	13.30-16.00	Practical part: hands-on training
13.00-14.00	Presentations from participants		13.30 10.00	in cell culture laboratory
14.00-16.30	Practical part: hands-on training in cell culture laboratory		16.00-17.00	Discussion: Troubleshooting in
16 20 17 20	,			cell culture and characterisation
16.30-17.30	Realistic exposures: lung model	1		methods, questions of
19.00-21.00	Dinner	$oldsymbol{\gamma}$		audience

