

Effects of ZnO nanoparticles on Algae, Daphnia and Zebrafish larvae.

Nanna Brande-Lavridsen¹, T.P. Chen¹, S. Morris¹, M. Antal¹, D. Boyle^{1,2}, Z. Gajda-Meissner¹, T. Henry¹ and T. Fernandes¹ ¹The Institute of Life and Earth Sciences, Heriot Watt University, Edinburgh, Scotland, UK ²University of Plymouth, School of Biological and Marine Sciences, Plymouth, UK

Background:

- Incorporation of engineered nanoparticles (NPs) into consumer products is increasing rapidly and contamination of the environment with potential exposure of organisms has become a realistic concern.

- The aquatic toxicity of metal oxide nanoparticles is related to NP physicochemistry and the characteristics of the exposure medium.

- Toxicity of metal NPs has frequently been attributed to dissolution of metal ions; however, the contribution of particles to toxicity (or "nano-specific" effects) has not been resolved for most NPs.

- Zinc oxide, ZnO, NPs are widely used in commercial products because of their chemical stability, strong adsorption and antibacterial property. They are one of the main components in sunscreens due to their effectiveness at shielding UVA.

Our objectives:

- To assess the toxicity of ZnO NPs (coated (nominal size: 152 nm) and uncoated (nominal size: 70-90 nm)), in parallel with the ionic ZnSO4, in three different aquatic organisms: an algae (Raphidocelis subcapitata), a crustacean (Daphnia magna), and a vertebrate (Zebrafish, Danio rerio).

- To evaluate the effects of exposure media on the toxicity of the NPs in Zebrafish larvae.

Method:

- Zebrafish: The toxicity of the triethyoxycaprylsilane coated ZnO NPs (NM-111) and uncoated ZnO NPs (NM-110) (1-100 mg/L), and ZnSO₄ (1-500 mg/L), to Zebrafish (D. rerio) larvae (72-96 hpf) was assessed following 24 h exposure in 3 different media: Sea salt (Egg water) medium (60 mg/L Instant Ocean), OECD medium (CaCl₂ 0.294 g/L, MgSO₄ 0.1232 g/L, NaHCO3 0.0647 g/L, KCI 0.0057 g/L) or E3 medium (NaCI 0.290 g/L, KCI 0.013 g /L, CaCl₂*2H₂O 0.048 g/L, MgCl₂*6H₂O 0.082 g/L, 1 % Methylene blue).

- Daphnia: Acute immobilization test (48 h, OECD test guideline 202) (at concentrations 0.16-10 mg/L) and chronic reproduction test (21 days, OECD test guideline 211) (at concentrations 180-1400 µg/L) were performed to determine the toxicity of ZnO NPs (NM-110 and NM-111) compared to ZnSO.

- Algae: The toxicity of ZnO NPs (NM-110 and NM-111) in R. subcapitata was tested following OECD algal growth inhibition assay (guideline 201). Algal cells were exposed 96 h to ZnO NPs (10-76 µg/L), and samples were extracted for chlorophyll-a and measured as a surrogate measure for algae population growth.

Results:

- In Zebrafish larvae, ZnO NPs caused mortality in Sea salt (coated ZnO NPs: LC50 = 13.9 mg ZnO/L (11.1 mg Zn/L), uncoated ZnO NPs: LC50 = 15.0 mg ZnO/L (12.0 mg Zn/L)) and E3 medium (uncoated ZnO NPs: LC50 = 15.3 mg ZnO/L (12.3 mg Zn/L)), but no mortality was observed by either ZnO NPs in OECD medium (Figure 4).

- There was no difference in mortality in larvae exposed to either coated or uncoated ZnO NPs (i.e. similar LC50 values) (Figure 4).

- ZnSO4 caused mortality in both Sea salt and OECD media, with similar LC50 values (Sea salt LC50: 126.4 mg ZnSO₄/L (28.7 mg Zn/L), OECD LC50: 88.5 mg ZnSO4/L (20.1 mg Zn/L)) (Figure 4).

- Exposure of *R. subcapitata* to ZnO NPs caused decreased growth (measured as chlorophyll-a concentration) with increasing NP concentrations (Figure 6)

- Growth inhibition EC50 values after 24 h, 48 h, 72 h and 96 h after coated and uncoated ZnO NPs exposure is shown in Table 2.

ZnO NPs Uncoated	ZnO NPs Coated
40.71 µg ZnO/L	29.06 µg ZnO/L
28.32 µg ZnO/L	25.29 µg ZnO/L
30.56 µg ZnO/L	17.26 µg ZnO/L
29.59 µg ZnO/L	20.68 µg ZnO/L
	ZnO NPs Uncoated 40.71 µg ZnO/L 28.32 µg ZnO/L 30.56 µg ZnO/L 29.59 µg ZnO/L

- In Daphnia acute toxicity tests, the concentration estimated to cause 50 % immobility (EC50) from exposure to coated and uncoated ZnO NPs and ZnSO₄ is shown in Table 1.

- Results from the chronic exposure showed that coated ZnO NPs, decreased reproduction in D. magna significantly in a concentration dependent manner (Figure 5A).

- At concentration 840 µg ZnO/L the number of neonates per adult had decreased to 6 compared to 20 neonates per adult in the control group. - At the highest concentration (1400 µg ZnO/L) all animals died before the end of the experiment.

- For the uncoated ZnO NPs, all organisms died before end of exposure at concentrations 840 and 1400 µg ZnO/L during chronic exposure.

- There was a concentration-dependent but nonsignificant trend of decreasing reproduction (7 neonates/adult at 500 µg ZnO/L compared to 14 neonates/adult in control) (Figure 5B).

- Exposure to coated ZnO NPs also caused a significant reduction in body size for all concentrations 180-840 µg ZnO/L (Figure 5C).

- The average body size for the control animals was 3.64 mm whereas the average sizes of organisms exposed to concentrations 180 µg ZnO/L was 3.42 mm, 300 µg ZnO/L was 3.38 mm, 500 µg ZnO/L was 3.42 mm, and 3.09 mm for animals exposed to 840 µg ZnO/L.

In conclusion:

- Zebrafish.
- ZnO NPs caused mortality in Zebrafish larvae exposed in Sea salt and E3 media, but not in OECD media.
- There was no difference in mortality upon exposure to coated and uncoated ZnO NPs.
- ZnSO₄ caused mortality in both Sea salt and OECD media, with similar LC50 values.
- The toxicity of the NPs was greater than the Zn ion (ZnSO4 was less toxic than ZnO NPs); this being consistent with results from the literature.

Daphnia

- In D. magna acute immobility test, ZnSO₄ was less toxic than ZnO NPs (when EC50 concentrations are calculated as mg Zn/L). There was no difference in immobilization upon exposure to coated and uncoated ZnO NPs at 48 h.
- Exposure to coated ZnO NPs, reduced reproduction significantly in a concentration dependent manner. There was a similar but non-significant trend of reduction in reproduction for Daphnia exposed to uncoated ZnO NPs.

Exposure to coated ZnO NPs caused a significant reduction in body size. -

Alga Exposure of R. subcapitata to ZnO NPs caused decreased growth (measured as chlorophyll-a concentration). 6-0

6 The results suggest that coated ZnO NPs was more toxic to the algal test species than uncoated ZnO NPs.

