

Deliverable Report for Grant Agreement Number 760813

Deliverable D2.5

Identification of key events with predictive value for effects due to chronic ENM exposure

Due date of deliverable: 30/04/2020 Actual submission date: 28/04/2020

Lead beneficiary for this deliverable: *LTAP* Additional beneficiary members: NRCWE, MISVIK, BASF, HC

Diss	emination Level:	
PU	Public	Х
PP	Restricted to other programme participants (including the Commission	
	Services)	
RE	Restricted to a group specified by the consortium (including the	
	Commission Services)	
CO	Confidential, only for members of the consortium (including the	
	Commission Services)	

TABLE OF CONTENTS

1.	DESCRIPTION OF TASK	3
2.	DESCRIPTION OF WORK & MAIN ACHIEVEMENTS	4
2.1	Summary	4
2.2	Methodological approach 2.2.1 Identification of ENM-relevant AOs 2.2.2 Identification of nano-relevant AOPs 2.2.3 Identification of MIEs/KEs, biomarkers and assays potentially predictive of selected AOPs 2.2.4 Interaction between identified AOPs and in vitro work	5 5 5 12
2.3 2 2 2	Results 2.3.1 Identification of ENM-relevant AOs 2.3.2 Identification of nano-relevant AOPs 2.3.3 Identification of MIEs/KEs, biomarkers and assays potentially predictive of selected AOs 2.3.4 Anchorage of in vitro testing in the AOP approach	12 12 13 13 17
2.4	Refinement of selected AOPs	17
2.5	Conclusions – contribution to PATROLS	18
3.	DEVIATIONS FROM THE WORKPLAN	18
4.	PERFORMANCE OF THE PARTNERS	19
5.	CONCLUSIONS	19
6.	ANNEX	19
Anı	nex 1: List of (potential) NM-induced AOs and related (tentative) AOPs and publications.	20
Anı	nex 2: MIEs/KEs, biomarkers and assays for PATROLS-relevant AOPs.	22
7.	REFERENCES	64

1. Description of task

An adverse outcome pathway (AOP) is a linear description of a toxicological process linking a molecular initiating event (MIE), in which a stressor first perturbs the biological system (e.g., a molecular interaction between a xenobiotic and a specific biomolecule), through a series of intermediate or key events (KEs), to the adverse outcome (AO), i.e. an adverse effect, on health for example [1]. AOPs are based on existing knowledge (*in vivo*, *in vitro*, or computational systems), are generally a sequential series of events and represent plausible hypotheses of important events, relevant to risk assessment [2, 3]. AOPs are substance-agnostic and KEs are not AOP-specific. KEs must be essential for the AO to occur, thus describing causal relationships, and are defined as measurable changes in a biological state [4].

In AOPs, knowledge is organized in a way that the information can be used for risk assessment, from which key uncertainties and research priorities can be identified, and through which predictive approaches needed to advance regulatory (eco)toxicology can be improved [2].

Task 2.5 Identification of mechanistic key events linked to AOPs; (LTAP, HC, NRCWE, MISVIK, BASF); M2-28

"This task will identify mechanistic key events (KE) for the design and refinement of AOPs induced by the chronic oral and/or inhalation exposure to ENM (engineered nanomaterials). Existing in vivo toxicogenomics and toxicity data will be curated from partners (LTAP, HC) and mined in the literature and databases (Misvik). Metaanalyses will be conducted using integrative bioinformatics and predictive toxicology workflows, including advanced clustering algorithms, large-scale pathway analysis and network methods based on the use of various R/Bioconductor packages and gene set sources (e.g. KEGG, WikiPathways, Gene Ontology, transcriptional networks, Comparative Toxicogenomics Database and the MsigDB). This information will be connected to toxicity endpoints for validating established and putative AOPs, including the OECD AOP for liver fibrosis (AOP: 38 - Protein Alkylation leading to Liver Fibrosis) and the recently published AOPs for lung fibrosis built by partners involved in this task. An AOP workshop will be organized at M17 to inform Tasks 3.3 and 4.3 on the identified KEs/pathways enabling development of targeted in vitro bioassays with a high predictive value. In addition, novel AOP-targeted pathway analysis concepts based on the WikiPathways/ PathVisio platform will be explored using the data and pathways/KE identified by the meta-analyses to further refine our understanding, particularly in relation to data generated from studies applying realistic exposure scenarios. Archived tissue and tissues from Tasks 2.2 and 2.3 will be utilised to generate new complementary transcriptomics (HC) and toxicological (LTAP, BASF, NRCWE) data where gaps of knowledge are identified. Novel economical targeted omics strategies, such as tempO-seq (used within EU-ToxRisk) will be considered to reduce costs and increase throughput. Based on the AOPs and on the mechanistic KEs identified above, analyses will be performed on target tissues, mainly lung and liver. Candidate pathways include ENM-induced pro- and anti-inflammatory and fibrotic responses, and the carcinogenicity axis associated with hypoxic-like responses (e.g. HIF-1 and its target genes). New data will then be integrated in meta-analyses to further support existing hypotheses or identify new KEs of importance for chronic ENM exposure (Misvik). This information will be continually fed to Tasks 3.3 and 4.3 as it becomes available to refine the bioassays being developed in WP3 and 4. Additionally, pathways with a predictive potential will be validated by large-scale omics-based toxicity prediction analysis and will support the IVIVE work in WP6 (Task 6.5)."

2. Description of work & main achievements

2.1 Summary

AOPs are part of the current paradigm shift taking place within toxicology, i.e. to move from the assessment of apical endpoints in animals to the use of upstream molecular mechanisms and pathways tested in alternative cell-based systems and predictive of toxicity and disease in humans [5]. In 2012, the OECD launched a programme on the development of AOPs and established the AOPwiki (https://aopwiki.org/), which provides an open source platform for researchers to collaborate. OECD endorsement of the AOP concept has greatly facilitated implementation into regulatory thinking, which means that alternative methods developed in line with and linked to AOPs will be more likely to reach new levels of importance and recognition in regulatory risk assessment procedures. The AOP concept was originally developed in order to predict chemical risks to humans and the environment [2] and more recent efforts have aimed at application of the concept within nanosafety [6]. Even if the AOP concept is inherently compound agnostic, specific attention to the peculiarities and challenges associated with assessment of nanomaterial-induced toxicity is needed. An example includes particular attention to the MIE, which may manifest itself as less "molecular" for NMs as compared to chemicals. Nanomaterials are known to be involved in physical or mechanical damage of cell components, in contrast to chemicals which may initiate the AOP cascade through molecular interactions, such as ligand-receptor binding processes [6]. In addition, in vitro assays targeting specific KEs need to consider nanosafety-specific aspects.

Objective: The main objective of T2.5 was to develop/identify AOPs for ENM-induced AOs relevant for human health, to identify key events (KEs) useful as predictive markers of the AO and to feed WP3 and 4 (*in vitro* WPs) with this information to help decide which *in vitro* assays to prioritize.

Summary of the methodological approach: first, all partners worked on the strategy for completing the task. The first step was to identify AOs:

- (potentially) induced by ENM
- after inhalation or oral exposure,
- supported by sufficient evidence in regulatory (collected in T2.1) and other experimental studies,
- and relevant in the frame of PATROLS.

Existing AOPs (related to NM or not) and KEs were then identified on the AOP-Wiki (https://aopwiki.org/). According to their expertise, partners volunteered to work on specified AOs and used relevant literature to develop or refine new/existing putative AOPs and identify KEs and potentially predictive *in vitro* biomarkers/assays that could be prioritized for *in vitro* testing. This information was organized in tables and the selection of biomarkers was justified by the type of evidence available in the literature to suggest predictive value.

Summary of results: we identified relevant (potential) AOs for ENM toxicity and AOPs/KEs/potentially predictive *in vitro* markers to guide WP3 and 4 partners in their *in vitro* experiments. This was presented and discussed during the "AOP workshop" (Milestone 4) organized by LTAP in Brussels (May 14-15, 2019). A crosstalk was then established between T2.5 and WP3 and 4 partners to determine what KEs and

biomarkers are planned to be tested, how the current PATROLS work covers the AOPs/KEs, and to identify gaps. Data generated *in vitro* and further analyses conducted by PATROLS partners will allow a constant refinement of the AOPs, and will help to identify which biomarker(s) can be predictive of the AOs.

2.2 Methodological approach

2.2.1 Identification of ENM-relevant AOs

We first identified AOs (potentially) induced by ENM after inhalation or oral exposure (routes of exposure considered in PATROLS), supported by evidence in regulatory (collected in T2.1 and presented in D2.1) or other experimental studies.

2.2.2 Identification of nano-relevant AOPs

Existing AOPs (related to ENM or not) were then identified on AOPWiki (https://aopwiki.org/). A first list of publications was also proposed by experts to serve for AOP enrichment and identification of KE.

2.2.3 Identification of MIEs/KEs, biomarkers and assays potentially predictive of selected AOPs

According to their expertise, partners volunteered to work on some of the selected AOs (Table 1). Table 1 indicates which partners contributed to which AO (contributing partners), how they proposed to work on the identification of AOP(s), KEs and potentially predictive assays (methodological approach) and which partner led the work (leading partner).

Partners selected relevant literature/information based on their expertise to define or refine new/existing putative AOPs and identify KEs and potentially predictive *in vitro* biomarkers/assays that could be prioritized for *in vitro* testing. Information on the *in vitro* model and/or cell type to use to perform the assays was also included. The justification for the selection of biomarkers was given (type of evidence to suggest a predictive potential of the marker). The methodological approaches used by each leading partner are described below.

Organ	AO	Contributing partners	Methodological approach(es) based on	Leading partner		
Lung	inflammation	BASF	literature and correlation with in- house immunohistological staining for M1 and M2 macrophages	BASF		
	NRCWE own ongoing research and literature					
	MISVIK data mining/integration and transcriptomics					
	fibrosis LTAP own past/ongoing research and literature					
		HC	development of AOP173; gene signature/classifier (enrichment method)			
		MISVIK	data mining/integration and transcriptomics			
	mesothelioma	LTAP	literature	LTAP		
	cancer	NRCWE	literature	NRCWE		
Liver	inflammation	MISVIK	data mining/integration and transcriptomics	MISVIK		
	fibrosis	MISVIK	data mining/integration and transcriptomics	MISVIK		
	cancer	NRCWE	own ongoing work and literature	NRCWE		

Table 1: Contribution of partners to the definition of nano-relevant AOPs.

2.2.3.1 AOP for lung inflammation (leading partner: BASF)

Inflammation is an important biological process involved in many target organ toxicities and it should be recognized as a highly connected, central node within the global AOP network [7]. In rodent inhalation studies with engineered nanoparticles, parameters indicative for inflammatory processes were often observed already after short-term inhalation exposure [8], while other AOs like fibrosis and tumor formation could only be observed in long-term studies. Within this task, inflammation in the lung was processed in detail as an AO because not all inflammatory processes result in fibrosis and tumor.

The AOP for lung inflammation was mostly based on the first KEs of AOP173 (https://aopwiki.org/aops/173, "Substance interaction with the lung resident cell membrane components leading to lung fibrosis") that are linked to inflammatory processes (KEs 1493 "Increased Pro-inflammatory mediators", 1496 "Increased, secretion of proinflammatory and profibrotic mediators", 1497 "Increased, recruitment of inflammatory cells", 1498 "Loss of alveolar capillary membrane integrity" and 1499 "Increased, activation of T (T) helper (h) type 2 cells"). BASF reviewed the literature [9-14] and identified several parameters that were also observed in *in vivo* inhalation studies in rats (Annex 2). Most of these parameters can be assigned to the KE 1496 "Increased, secretion of proinflammatory and profibrotic mediators" as presented in AOP 173.

in vivo inhalation studies showed that alveolar macrophages (AMs) have a crucial role in pulmonary clearance as well as in orchestrating pulmonary immune responses. Data published during the past 3 decades suggest that these various activities are mediated by distinct subpopulations of macrophages, which are induced by signals they encounter in their local tissue microenvironment. In a rather simplistic view, these subpopulations can be divided into 2 major distinct macrophage phenotypes, which have been categorized broadly as pro-inflammatory/cytotoxic M1 macrophages and anti-inflammatory/wound repair M2 macrophages. Increasing evidence suggests that nanomaterials are capable of activating macrophages to the M1 phenotype, leading to the expression of pro-inflammatory mediators and recruitment of inflammatory cells. In order to refine the existing AOP, we identified AM phenotype as M1 or M2 upon short-term inhalation exposure to different (nano)materials followed by a post-exposure period. AM phenotyping was retrospectively performed using immunohistochemistry. M1 (CD68+iNOS+) and M2 (CD68+CD206+ and CD68+Argl+) AMs were characterized in formalin-fixed paraffin-embedded lung tissue of rats exposed for 6 h/day for five days to air, 100 mg/m³ nano-TiO₂, 25 mg/m³ nano-CeO₂, 32 mg/m³ multi-walled carbon nanotubes, or 100 mg/m³ micron-sized quartz. Figure 1 and 2 show examples of the immunohistological stain for M1 and M2 AMs, respectively [15].

During acute inflammation, relative numbers of M1 AMs were markedly increased, whereas relative numbers of M2 were generally decreased compared to control. Following an exposure-free period, changes in iNOS or CD206 expression correlated with persistence, regression or progression of inflammation, suggesting a role of M1/M2 AMs in the pathogenesis of pulmonary inflammation. However, no clear correlation of AM subpopulations with qualitatively distinct histopathological findings caused by different (nano)materials was found. A more detailed understanding of the processes underlying these morphological changes is needed, to identify biomarkers for different histopathological outcomes [15]. At the current stage, identifying AM subpopulation did not contribute to the refinement of the AOP.

Figure 1 Micrographs of left lung sections of rats exposed to different (nano)materials for 5 days. Expression of iNOS (M1 marker) shortly after the last exposure was visualized by immunohistochemistry. Binding of antibodies was visualized using a red chromogen for the AM marker CD68 and a brown chromogen for the M1 marker iNOS (A, C, E). Arrows indicate AMs shown with higher magnification in (B, D, F). Representative sections from each treatment group are shown. Controls were exposed to air only. AM: alveolar macrophages.

Figure 2. Micrographs of left lung sections of rats exposed to different (nano)materials for 5 days. Expression of CD206 (M2 marker) shortly after the last exposure was visualized by immunohistochemistry. Binding of antibodies was visualized using a red chromogen for the AM marker CD68 and a brown chromogen for the M2 marker CD206 (A, C, E). Arrows indicate AMs shown with higher magnification in (B, D, F). Representative sections from each treatment group are shown. Controls were exposed to air only. AM: alveolar macrophages.

2.2.3.2 AOP for lung fibrosis (leading partner: LTAP)

A qualitative AOP for lung fibrosis was developed by Sabina Halappanavar (HC), Monita Sharma, Hakan Wallin, Ulla Vogel (NRCWE), Kristie Sullivan and Amy J. Clippinger and published on AOPWiki: Aop 173, Substance interaction with the lung lung resident cell membrane components leading fibrosis to (https://aopwiki.org/aops/173). This AOP is included in the OECD Work Plan and has completed the external review facilitated by the OECD WPHA (Working Party on Hazard Assessment)/WNT (Working Group of the National Coordinators for the Test Guidelines Programme). Thus, HC mainly contributed to this part of the work. The MIE/KEs for the lung fibrosis AOP were strictly based on this AOP since it is at an advanced level of development (detailed description of KEs and relationship between KEs, stressors, applicability, etc). Most KEs match the tentative AOP proposed by Vietti et al. [9]. Identification of KEs and biomarkers were based on Vietti et al. and Nymark et al. [9, 16]. Vietti et al. [9] mainly focused on the roles of immune cells (macrophages) and structural cells (epithelial cells and fibroblasts) in the development of lung fibrosis

and review potentially pro-fibrotic mediators/biomarkers according to the producing cell type. The type of evidence supporting the role of the biomarkers in the development of lung fibrosis is described and gives a good indication on their predictive potential. Nymark et al. [16] used a data mining approach to identify pathways and genes potentially involved in lung fibrosis that could also be used to assess the pro-fibrotic potential of NMs.

2.2.3.3 AOP for lung cancer (leading partner: NRCWE)

The KEs proposed for the lung cancer AOP are based on Modrzynska et al. and Jacobsen et al. [17, 18] and AOP296 "Oxidative DNA damage leading to chromosomal aberrations and mutations" (https://aopwiki.org/aops/296). The AOP was based on chronic inhalation studies showing that inhalation of TiO₂ and carbon black nanoparticles induced lung cancer in chronic inhalation studies in rats [19]. Lung cancer was observed after exposure to an average 10 mg/m³ of P25 TiO₂ NPs and Printex90 carbon black with very similar potency. Notably, lung clearance rates were assessed and half-lives were in the order of 360 days.

There are different possible mechanisms of genotoxicity. Carbon black nanoparticles are mutagenic *in vitro* and *in vivo*. *In vitro*, increased levels of DNA strand breaks and oxidative DNA damage have been demonstrated, as well as increased mutation rates in the *cll* gene [20]. Carbon black is an efficient generator of reactive oxygen species [18] and the spectrum of mutations induced by carbon black suggests that the mutations are likely caused by oxidative DNA damage [21]. In addition, secondary genotoxicity caused by chronic inflammation upon inhalation of carbon black nanoparticles may also contribute to genotoxicity [22].

Diesel exhaust is carcinogenic in chronic inhalation studies in rats and has the same carcinogenic potential as carbon black and TiO₂ nanoparticles of similar size [19, 23]. The mutagenic potential of diesel exhaust particles and carbon black nanoparticles is similar *in vitro* [24]. Diesel exhaust particles consist of an insoluble carbon core and adsorbed polyaromatic hydrocarbons, some of which are genotoxic. Thus, both the insoluble carbon core and associated polyaromatic hydrocarbons may contribute to formation of DNA damage, mutations and subsequently cancer.

2.2.3.4 AOP for lung mesothelioma (leading partner: LTAP)

For lung mesothelioma, AOP 171 (Chronic cytotoxicity of the serous membrane leading to pleural/peritoneal mesotheliomas in the rat, https://aopwiki.org/aops/171) is under development. This AOP is tentative and currently lists potential MIE and KEs, without detailed information on KEs, relationship between KEs, stressors, applicability, etc. Moreover, this AOP does not include any KE on genotoxicity, which is an essential process in the development of tumours [25]. Therefore, publications on the general understanding of the pathogenesis of lung mesothelioma [26, 27] and on the carcinogenic potential of carbon nanotubes (CNT) and/or nanofibers [28, 29] were identified. These references propose a sequence of events (that could be considered as tentative AOPs) and include genotoxicity and/or genome instability, that were included as KEs to refine AOP 171. Biomarkers were identified from the same literature.

2.2.3.5 AOP for liver inflammation (leading partner: MISVIK)

At the start of the task an AOP named "Lysosomal damage leading to liver inflammation" (https://aopwiki.org/wiki/index.php/Aop:144) had been established in the AOP wiki. Since then the AOP has been refined and further developed towards describing liver fibrosis and is now named "Endocytic lysosomal uptake leading to liver fibrosis" (AOP:144, https://aopwiki.org/aops/144). Both the legacy AOP and the updated version aimed at liver fibrosis prediction are developed to be applicable to nanomaterials.

The original legacy AOP describing liver inflammation was used as a basis for mapping biomarkers related to the adverse outcome and assays for testing. A previously developed toxicogenomic tool predictive of liver injury was used to map four gene sets representative of diverse toxicity mechanisms and pathways to the KEs in the AOP ([30], data from Supplemental Data 5). Based on bioinformatics assessment on pathway-level, the four gene sets were associated with four of seven KEs in the AOP. The relevance level assigned (C - strongly associated with the AO) was based on the fact that the gene sets (referred to as components G, H, N and I in the original publication) had been validated for their prediction of 17 different liver pathologies induced by chemicals in rats and of human drug-induced liver injury, based on data from rat and human primary hepatocytes.

Assays recommended for *in vitro* testing of the gene sets include high-throughput whole-genome or targeted transcriptomics techniques such as Affymetrix microarrays (PrimeView U219 Array Plate (up to 96x)), L1000 (uses Luminex[™] beads), or TempO-Seq (BioSpyder). The information in the gene sets mapped to the AOP (including both genes and pathways) may also be used as a basis for development of other types of assays.

For some of the KEs in the AOP there are other gene sets that relate to them, in addition to the ones that have been mapped in this task, but that have not been validated for liver pathology prediction. Nevertheless, these may become relevant based on further ongoing work on refinement and validation of the tool for nanomaterials. The suggested cell types (hepatocytes, e.g. cell lines HepG2 and HepaRG) are based on knowledge gained from chemicals, but other cell types may become more relevant for nanomaterials, e.g. immune cells or 3D/co-culture systems.

2.2.3.6 AOP for liver fibrosis (leading partner: MISVIK)

AOP:144 describing "Endocytic lysosomal uptake leading to liver fibrosis" (https://aopwiki.org/aops/144) was used as a basis for mapping biomarkers and assays for testing, similarly as described above for liver inflammation. Briefly, the four gene sets previously identified to be predictive of liver injury, as described above, were mapped to five of nine KEs in the AOP. The same assays (high-throughput whole-genome or targeted transcriptomics) and cell types are recommended as for the liver inflammation AOP (please refer to section 2.2.3.5).

2.2.3.7 AOP for liver cancer (leading partner: NRCWE)

The KEs proposed for the liver cancer AOP are based on Modrzynska et al. and Jacobsen et al. [17, 18] and AOP296 "Oxidative DNA damage leading to chromosomal

aberrations and mutations" (https://aopwiki.org/aops/296). The AOP for liver cancer is based on the key observation that inhalation exposure to carbon black nanoparticles induces DNA damage in liver [31, 32].

The observed DNA damage was shown to be likely caused by particle-induced generation of reactive oxygen species. Carbon black nanoparticles are mutagenic *in vitro* and *in vivo*. *In vitro*, increased levels of DNA strand breaks and oxidative DNA damage have been demonstrated, as well as increased mutation rates in the *clI* gene [20]. Carbon black is an efficient generator of reactive oxygen species [18] and the mutation spectrum of carbon black-induced mutations suggest that the mutations are likely caused by oxidative DNA damage [21].

It was shown that pulmonary inflammation was not the cause of the DNA damage induced by carbon black nanoparticles since pulmonary dosing with CeO₂ and TiO₂ NPs of similar size induced similar inflammation but no DNA damage [17]. All three types of NPs translocated to liver. Translocation likely occurred via blood, as translocation to the liver following oral exposure was below the level of detection [17]. In the study, carbon black but not CeO₂ or TiO₂ generated high levels of reactive oxygen species and DNA damage in liver following intravenous injection as well as following translocation of nanoparticles from lung. This suggests that liver genotoxicity is caused by primary genotoxicity in terms of particle-induced ROS, leading to mutations [20] and cancer.

2.2.4 Interaction between identified AOPs and in vitro work

The strategy for T2.5, selection of AOs and identification of AOPs/KEs/assays were presented and discussed during the "AOP workshop" (Milestone 4) organized by LTAP in Brussels (May 14-15, 2019) with the *in vitro* partners and to establish an interaction between T2.5 and WP3 and 4 to exchange information. Assays planned by *in vitro* partners were cross-checked with the assays proposed by T2.5.

2.3 Results

2.3.1 Identification of ENM-relevant AOs

We identified the following AOs (potentially) induced by ENMs, supported by evidence in regulatory (collected in T2.1 and presented in D2.1) and other experimental studies, after inhalation and oral exposure:

- lung inflammation,
- lung emphysema,
- lung fibrosis,
- <u>lung cancer</u> including <u>mesothelioma</u>,
- cardiovascular diseases,
- liver inflammation,
- liver fibrosis,
- liver cancer,
- gut inflammation and cancer and,
- kidney fibrosis.

Based on the available expertise of partners and limited evidence for induction of some of the pre-selected AOs by ENMs, **lung inflammation, fibrosis, mesothelioma and**

cancer, and **liver inflammation**, **fibrosis and cancer** were consensually considered relevant in the framework of PATROLS and selected for further work (Annex 1: list of potential ENM-induced AOs and related (tentative) AOPs).

2.3.2 Identification of nano-relevant AOPs

Existing AOPs (related to NM or not) were identified on AOPWiki (https://aopwiki.org/) and a first list of publications was proposed by experts to serve for AOP enrichment and identification of KEs (Annex 1). AOPs (on AOPWiki) exist at different stages of development for lung inflammation (as part of the AOP for lung fibrosis), fibrosis, mesothelioma and liver inflammation (as part of the AOP for liver fibrosis), fibrosis and cancer.

2.3.3 Identification of MIEs/KEs, biomarkers and assays potentially predictive of selected AOs

Information was organized in an Excel document (one sheet per AOP; see Annex 2). All Excel sheets are included in this document in Annex 2:

- Sheet 1: MIEs/KEs, biomarkers and assays for lung inflammation.
- Sheet 2: MIEs/KEs, biomarkers and assays for lung fibrosis.
- Sheet 3: MIEs/KEs, biomarkers and assays for lung cancer.
- Sheet 4: MIEs/KEs, biomarkers and assays for lung mesothelioma.
- Sheet 5: MIEs/KEs, biomarkers and assays for liver inflammation.
- Sheet 6: MIEs/KEs, biomarkers and assays for liver fibrosis.
- Sheet 7: MIEs/KEs, biomarkers and assays for liver cancer.

Each excel sheets contains:

- Information about the leader partner who organized the information about the AOP.
- AOPWiki URL and literature used to identify putative MIE/KEs, biomarkers and assays.
- A left table that includes MIE/KEs URL (KE number) and denomination (KE), potential biomarkers (markers), proposed cell types (cell type) and assays (assay) to measure the biomarker, and finally the type of evidence (type of evidence) found in the literature that suggested a predictive potential of the marker.

Types of evidence was coded as follows :

- A Association between *in vitro* and *in vivo* data
- B Implication in the AO (deficient or transgenic mice, inhibitors, etc)
- C Strongly associated with the AO
- D In vivo transcriptomics
- E Data mining
- F Other (specified)
- A right table (green, see below for further details) filled by WP3 and 4 *in vitro* partners (partner) with the biomarkers (markers), cell types or models (cell type) and assays (assay) they plan to use in PATROLS.

Based on the identified AOPs and MIE/KEs, figures 3 and 4 show the schematic representations of (tentative) AOPs defined/refined in this task for lung and liver AOs, respectively, after inhalation or oral exposure.

Some KEs are shared by several AOPs. As expected, many KEs are common/identical for (i) lung inflammation and fibrosis (KEs 1495, 1496, 1497, 1498 and 1499) and (ii) liver inflammation and fibrosis (KEs 1539, 898, 177 and 55) since they derive from the same AOPs (AOP 173 for lung and AOP144 for liver). Similar KEs (with a different AOPWiki number but a similar description) are found in lung cancer and mesothelioma (inflammation and genotoxicity), lung and liver cancer (mutations), lung and liver inflammation and fibrosis (increased pro-inflammatory mediators KEs 1496/1493 and cytokine release KE87; recruitment of inflammatory cells KE1497, inflammatory cell infiltration KE901 and leukocyte recruitment KE1494), lung and liver fibrosis (extracellular matrix deposition KE1501 and accumulation collagen KE68).

Except for liver cancer, where primary genotoxicity is proposed as the mechanism of action, inflammatory processes ("secretion of proinflammatory mediators", "particle surface area-dependent inflammation", "inflammation", "cytokine release" and "Increased pro-inflammatory mediators") appear to be essential for the development of all AOs. Thus, it is proposed that these KEs (inflammation and genotoxicity) and associated biomarkers should be tested in a first tier, in a screening approach to identify NMs that need prioritization for further testing. The second tier would include KEs downstream of inflammation or genotoxicity or "specific" to (some of) the AOP(s) (e.g. fibroblast proliferation and myofibroblast differentiation for lung fibrosis).

Deliverable D2.5

Figure 3: Nano-relevant AOPs/networks of MIEs/KEs leading to lung AOs identified in PATROLS. When available, AOPwiki IDs for MIEs/KEs are indicated in red. AOP for lung inflammation is a part of AOP173; AOP for lung fibrosis is AOP173; AOP for lung mesothelioma is partially based on AOP171. Common inflammatory KEs are indicated in green; KEs not covered by PATROLS *in vitro* testing are indicated in yellow.

Figure 4: Nano-relevant AOPs/networks of MIEs/KEs leading to liver AOs identified in PATROLS. When available, AOPwiki IDs for MIEs/KEs are indicated in red. AOP for liver inflammation is partially based on AOP144; AOP for liver fibrosis is AOP144. Common inflammatory KEs are indicated in green; KEs not covered by PATROLS *in vitro* testing are indicated in yellow.

2.3.4 Anchorage of in vitro testing in the AOP approach

The strategy for T2.5, selected AOs and identified AOPs/KEs/assays were presented and discussed during the "<u>AOP workshop</u>" (Milestone 4) organized by LTAP in Brussels (May 14-15, 2019). The objective was to inform partners from other WP about the selection of endpoints in the *in vitro* assays for toxicity testing and to establish a crosstalk between T2.5 and WP3 and 4 partners. KEs and biomarkers planned to be tested by each group were discussed. How the current strategy covers the AOPs/KEs and gaps were identified. T2.5 partners presented their work on individual AOPs.

PATROLS also co-organized an <u>OECD workshop</u>, the WPMN Workshop on "Advancing Adverse Outcome Pathway Development for Nanomaterials Risk Assessment and Categorization", held at OECD on 11-12th September 2019, where AOP173 was presented together with relevant PATROLS *in vitro* assays.

The information collected and formatted by T2.5 on the identification of AOPs, MIEs/KEs, biomarkers and assays potentially predictive of selected AOs was distributed to WP3 and 4 in vitro partners. They were asked to complete the table with their own tests. The objective was to cross-check biomarkers and assays identified in T2.5 with assays planned by WP3 and 4 in vitro partners (see annex 2 where the right tables (in green) were filled by WP3 and 4 with the biomarkers, cell types or models and assays they selected for PATROLS in vitro testing). This document allows, on the one hand, to guide in vitro partners in the choice of assays and cell models that should be prioritized and, on the other hand, to get an insight on how PATROLS in vitro testing covers the AOP KEs. This document is a living document that can constantly be fed/refined by T2.5, if new knowledge and data (relevant to the AOPs) or AOPs become available during the project. In vitro partners will also contribute, if they plan to test other biomarkers or experimentally identify one or a set of assays predictive of an AO. Annex 2 illustrates how PATROLS in vitro testing covers identified KEs and identifies KEs not (currently) evaluated in vitro (in yellow in annex 2). Annex 2 indicates that a large part of KEs (excluding AOs, 25 on a total of 44 KEs) will be assessed in vitro, suggesting that the current plans are appropriate to identify predictive biomarkers. Moreover, although the recruitment of inflammatory cells (common to KEs found in 4 AOPs: lung and liver inflammation and fibrosis) is not directly testable in vitro, it is the consequence of the upstream KEs (pro-inflammatory mediators or cytokine release) that will be covered.

2.4 Refinement of selected AOPs

As mentioned before, AOPs can constantly be refined if new knowledge or data (relevant to the AOPs) or AOPs become available during the project and if *in vitro* partners experimentally identify one or a set of assays predictive of an AO.

Previously published gene expression microarray data from mouse lungs exposed to a variety of stressors (bleomycin, bacterial infections, overexpression of cytokines, welding fumes, etc) available from the public domain that are known to cause lung diseases (lung inflammation, emphysema, chronic obstructive pulmonary disease (COPD), lung fibrosis and lung cancer) were used by HC to develop a 17-gene profibrotic biomarker panel (PFS17) that is specifically predictive of lung fibrosis ([33-35] and Rahman et al, under revision in *Small*). The Table 2 lists the 17 genes in PFS17. HC is currently validating this 17-gene pro-fibrotic signature with new transcriptomics data from lungs exposed to CNTs and on PCLS (precision-cut lung slices) model exposed to NMs. The results will indicate (i) whether the signature is predictive of lung pro-fibrotic activities of NMs and could be used as biomarker and (ii) whether the 17 genes could be included in AOP173 for refinement.

Table 2: 17-gene	pro-fibrotic	biomarker	panel ((PFS17)).

Gene	Accession Code	Title
Arg1	NM_007482.3	Mus musculus arginase, liver (Arg1), mRNA
C1qb	NM_009777.2	Mus musculus complement component 1, q subcomponent, beta polypeptide (C1qb), mRNA
Ccl9	NM_011338.2	Mus musculus chemokine (C-C motif) ligand 9 (Ccl9), mRNA
Ccr5	NM_009917.5	Mus musculus chemokine (C-C motif) receptor 5 (Ccr5), mRNA
Ch25h	NM_009890.1	Mus musculus cholesterol 25-hydroxylase (Ch25h), mRNA
Clec4a2	NM_001170333.1	Mus musculus C-type lectin domain family 4, member a2 (Clec4a2), transcript variant 1, mRNA
Ctss	NM_021281.3	Mus musculus cathepsin S (Ctss), transcript variant 2, mRNA
Fcgr2b	NM_001077189.1	Mus musculus Fc receptor, IgG, low affinity IIb (Fcgr2b), transcript variant 1, mRNA
Fxyd4	NM_001173372.1	Mus musculus FXYD domain-containing ion transport regulator 4 (Fxyd4), transcript variant 2, mRNA
ltgb2	NM_008404.4	Mus musculus integrin beta 2 (Itgb2), mRNA
Lpxn	NM_134152.3	Mus musculus leupaxin (Lpxn), mRNA
Ly86	NM_010745.2	Mus musculus lymphocyte antigen 86 (Ly86), mRNA
Retnla	NM_020509.3	Mus musculus resistin like alpha (Retnla), mRNA
S100a4	NM_011311.2	Mus musculus S100 calcium binding protein A4 (S100a4), mRNA
Serpina3g	NM_009251.2	Mus musculus serine (or cysteine) peptidase inhibitor, clade A, member 3G (Serpina3g), transcript variant 1, mRNA
Serpina3n	NM_009252.2	Mus musculus serine (or cysteine) peptidase inhibitor, clade A, member 3N (Serpina3n), mRNA
Slc26a4	NM_011867.4	Mus musculus solute carrier family 26, member 4 (Slc26a4), mRNA

2.5 Conclusions – contribution to PATROLS

In this task, partners identified:

- (potential) AOs relevant to NM exposure via inhalation and oral routes, which are the routes considered in PATROLS and
- associated AOPs/KEs/biomarkers with a predictive potential on AOPWiki and in the literature.

This information was shared with *in vitro* partners to identify potentially predictive assays, to decide which assays should be prioritized for *in vitro* testing, how KEs are covered by their strategies and identify gaps. An overview of the selected AOPs also identified inflammatory processes and genotoxicity as probably priority endpoints to address in the first instance.

Knowing that AOPs are interesting at different levels i) to develop testing strategies, ii) to identify (knowledge) gaps, iii) to prioritize substances for testing and iv), for regulatory risk assessment, this work contributed to improve/strengthen the PATROLS *in vitro* testing strategy which aims at identifying predictive assays for NM toxicity that could be used in the frame of risk assessments.

3. Deviations from the Workplan

Although archived tissues and tissues identified in Tasks 2.2 and 2.3 were planned to be used to generate new complementary transcriptomics (HC) and toxicological (LTAP, BASF, NRCWE) data, additional experiments are not planned for the moment. According to Task 2.2 and 2.3 (PATROLS Task 2.2 2.3_BASF NRCWE in https://patrolsproject.webdav.hidrive.strato.com/users/patrolsproject/3 WP Space\WP2\Task2.2), organs are available as paraffin blocks that could be used for additional histology and immunohistology. Very few organs are available as deep frozen tissues (required for transcriptomics analysis) for inhalation and intratracheal studies. Lungs are available from a 28 days inhalation study (BASF) with BaSO₄ (NM-220) and CeO₂ (NM-212). Transcriptomics analysis are already published for pulmonary exposure of the strongly pro-fibrotic NM401 and Mitsui-7 [33, 36-41]. For oral studies, frozen kidneys and livers are available from a study with CeO₂ and SiO₂ and kidneys, livers and spleens from a study with TiO₂ and Ag-PVP. These frozen tissues are proposed to HC for new transcriptomics analysis but time and resources are not available for the moment. Due to the type of samples available and the very few NMs (at least for inhalation studies), toxicological experiments are not foreseen for the moment.

4. Performance of the partners

All partners contributed to the task as requested and fulfilled their requirements in a satisfactory time period. The report was drafted by LTAP with input from NRCWE, BASF, HC and MISVIK.

5. Conclusions

The Steering Board deems this deliverable to be fulfilled satisfactorily.

6. Annexes

Annex 1: List of (potential) NM-induced AOs and related (tentative) AOPs and publications.

Organ	(Potential) AO	Evidence for the AO	AOPWiki AOPs	AOPWiki URL	Publications proposed for AOP enrichment
					and KE identification
Lung	Inflammation	inhalation long-term/sub-chronic studies	part of lung fibrosis AOP (aop173)	https://aopwiki.org/aops/173	Williams and Halappanavar, 2017 (https://doi.org/10.1016/j.dib.2017.10.060); Nymark et al, 2017 (doi: 10.1093/toxsci/kfx252)
	Cardio-vascular diseases	induced by ambient air pollution PM and CNT (Poulsen et al, 2015 DOI: 10.1016/j.taap.2015.01.011)	Secretion of inflammatory cytokines after cellular sensing of the stressor leading to plaque progression	https://aopwiki.org/aops/237	Saber et al, 2014 (PMID: 24920450)
	Emphysema	TiO ₂ , Metals and MeOx. Bomhard, 2018 (doi: 10.1016/j.etap.2018.02.003)			Draft developed by HC for OECD review (HC, Sabina Halappanavar))
	Fibrosis	inhalation long-term/sub-chronic studies (mainly CNT)	Substance interaction with the lung resident cell membrane components leading to lung fibrosis (aop173)	https://aopwiki.org/aops/173; https://aopwiki.org/aops/206; https://www.wikipathways.org/instance/WP3624; https://www.wikipathways.org/instance/WP3632	Nikota et al, 2016 (DOI 10.1186/s12989-016-0137-5); Labib et al, 2016 (DOI 10.1186/s12989-016-0125-9); Vietti et al, 2016 (DOI 10.1186/s12989-016-0123-y); Nikota et al, 2017 (DOI 10.1186/s12989-017-0218-0); Clippinger et al. 2016 (doi: 10.1007/s00204-016-1717- 8); Williams and Halappanavar, 2017 (https://doi.org/10.1016/j.dib.2017.10.060); Nymark et al, 2017 (doi: 10.1093/toxsci/kfx252)
	Cancer	inhalation long-term/sub-chronic studies (mainly CNT)			
	Mesothelioma	inhalation long-term/sub-chronic studies (mainly CNT)	Chronic cytotoxicity of the serous membrane leading to pleural/peritoneal mesotheliomas in the rat (aop171)	https://aopwiki.org/aops/171	
Liver	Inflammation	oral long-term/sub-chronic studies	Lysosomal damage leading to liver inflammation (aop144)	https://aopwiki.org/wiki/index.php/Aop:144	Kohonen et al, 2017 (DOI: 10.1038/ncomms15932); Nymark et al, 2017 (doi: 10.1093/toxsci/kfx252)
	Fibrosis	Van der Zande et al, 2014 (https://doi.org/10.1186/1743- 8977-11-8); Zhuravskii et al, 2016	Protein Alkylation leading to Liver Fibrosis (aop38)	https://aopwiki.org/wiki/index.php/Aop:38	Gerloff et al, 2017 (https://doi.org/10.1016/j.comtox.2016.07.001); Kohonen et al. 2017 (DOI: 10.1038/ncomms15932);

H202	H2020-NMBP-2017 PATROLS			Deliverable D2.5	
		(DOI: 10.3109/15376516.2016.1169341)	Endocytic lysosomal uptake leading to liver fibrosis (aop144)	https://aopwiki.org/aops/144	Nymark et al. 2017 (doi: 10.1093/toxsci/kfx252); Diwan et al. 2014 (https://doi.org/10.1371/journal.pone.0112193)
	Cancer	mainly based on epidemiological studies (association with air	PPARalpha-dependent liver cancer (aop37)	https://aopwiki.org/wiki/index.php/Aop:37	Modrzynska J et al (2017) (doi: 10.1186/s12989-017- 0238-9)
		pollution)	Sustained AhR Activation leading to Rodent Liver Tumours (aop41) Tumorisgnossis	https://aopwiki.org/wiki/index.php/Aop:41	
			Hepatocellular carcinoma (aop378)	nttps://aopwiki.org/events/378	
Gut	Inflammation	Bettini et al, 2017 (DOI:			
	Cancer	10.1038/srep40373)			
Kidney	Fibrosis	Huang et al, 2014 (DOI: 10.1021/tx500287f)			

AOPs identified in the frame of PATROLS are indicated in bold.

PATROLS H2020-NMBP-2017 Deliverable D2.5 Annex 2: MIEs/KEs, biomarkers and assays for PATROLS-relevant AOPs.

Sheet 1: MIEs/KEs, biomarkers and assays for lung inflammation. 1)

Lung inflammation	Person of contact	Lan Ma-Hock (lan.ma-hock@basf.com)	
	KE based on: Markers based on:	https://aopwiki.org/aops/173 Vietti et al, 2016 (DOI 10.1186/s12989-016-0123-γ) Pavan and Fubini 2017 (doi: 10.1021/acs.chemrestox.6b00409) Nikota et al. Particle and Fibre Toxicity (2017) 14:37 He et al. J Clin Toxicol (2012) S5:005 Sohaebuddin et al. Particle and Fibre Toxicity (2010) 7:22 Hussain et al. Particle and Fibre Toxicity (2010) 7: 10	
			Cille al les seconde and

KE that are not covered by PATROLS in vitro strategy										
KE number	KE	markers	cell type	assay	Type of evidence	mark	kers	cell type	assay	partner
<u>1495</u>	Increased, interaction with the resident cell membrane components	lysosome membrane permeabilization	3T3, ht bronchial epithelial cells, RAW macrophage, Mouse peritoneal macrophages, 16HBE14o cells, human bronchial epthelia cells, THP- 1 cells, human monocytic cell line, human macrophages	Acridine orange staining (change from lysosomal red to cytosolic green fluorescence)	С					
		membranolysis	red blood cells (RBC)	RBC lysis assay	A					
		membranolysis	lipid vesicles	?	?					
1496	Increased, secretion of proinflammat	ROS	macrophage, fibroblast	EPR (acellular), heme oxygenase I	C	ROS		A549, NCI- H441	CM-H2DCFDA - Invitrogen (Cat#C6827)	SU

H2020-NMBP-201	17	PATR	OLS	Delivera	ble D2.5					
ory an profik media	and ibrotic iators			(cellular, ELISA, RT-PCR),						
	-	р38 МАРК	fibroblast	WB	С					
		NFK-B	macrophage	WB, immunofluo	С					
	-	NADPH oxidase	macrophage	measure IL-1 β in presence of inhibitors (ex: DPI)	В					
	-	inflammasome	macrophage, epithelial cell	measure IL-1 β in presence of inhibitors	В, С	-	IL-1β (+ IL- 18)	THP-1	WST-1 (Roche), IL-1β (ELISA); IL-18 (ELISA)	RIVM
	-	MAP kinase	epithelial cell	WB	С					
		IL-1β	macrophage, epithelial cell	ELISA, WB (RT- PCR)	A, B	-	ΙL-1β	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts (MRC-5)	ELISA, R&D Systems (Cat#DY201)	AMI
							п-тр	Calu-S and Calu-S + MDM	ELIJA	
	-	TNF-α	macrophage	ELISA, WB (RT- PCR)	А, В, С		TNF-α	EpiAlveolar [™] (MatTek) without macrophages	ELISA, R&D Systems (Cat#DY210)	AMI

H2020-NMBP-2017	P	ATROLS	Deliver	able D2.5				
						EpiAlveolar [™] (MatTek) with macrophages		
						co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts		
						(MRC-5)		-
					TNF-α	Calu-3	ELISA	RIVM
					ΤΝΕ-α	A549, NCI- H441	R&D Systems (Cat#DY210)	SU
	IL-18	epithelial cell	ELISA, WB (RT- PCR)	С	IL-18	THP-1	eBioscience (Thermo Fisher)	RIVM
	IL-8	epithelial cell	ELISA, WB (RT- PCR)	С	IL-8	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts (MRC-5)	ELISA, R&D Systems (Cat#DY208)	AMI
					IL-8	Calu-3 and Calu-3 + MDM	ELISA	RIVM

H2020-NMBP-2017		PATROLS	Deliver	able D2.5				
	TGF-β	macrophage, fibroblast, epithelial cell	ELISA, WB (RT- PCR)	B, C	TGF-β	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages	ELISA, R&D Systems (Cat#DY240)	AMI
						co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts (MRC-5)		
	PDGF	macrophage, fibroblast, epithelial cell	ELISA, WB (RT- PCR)	C	PDGF-AA	co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts (MRC-5)	ELISA, R&D Systems (Cat#DY221)	AMI
	MCP-1	macrophage	ELISA	A	MCP-1	Calu-3 and Calu-3 + MDM	ELISA	RIVM
	GM-CSF	macrophage, T- cells, mast cells, endothelia cells, fibroblasts	ELISA	A				
	IL-6	macrophage	ELISA	А, В	IL-6	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages	ELISA, R&D Systems (Cat#DY206)	AMI

H2020-NMBF	P-2017	PATR	OLS	Deli	verable D2.5				
						11-6	co-culture hAELVi epithelial cells- macrophages (MDMs)	FLISA	RIVM
							Calu-3 + MDM		
						IL-6	A549, NCI- H441	R&D Systems (Cat#DY206)	SU
		IL-10	macrophage	ELISA	А, В	IL-10	primary monocytes	eBioscience (Thermo Fisher)	RIVM
						IL-10	Calu-3 + MDM	ELISA	RIVM
						All	A549	RNA-seq	Misvik (samples from SU)
<u>1497</u>	Increased, recruitment of inflammatory cells								
<u>1498</u>	Increased, loss of alveolar capillary membrane integrity					TEER	A549, NCI- H441 Calu-3 and	EVOM2 + electrodes (https://www .wpi- europe.com/ products/cell- and- tissue/teer- measurement /evom2.aspx) TEER, LDH	SU RIVM
						e integrity	Calu-3 + MDM	release	
<u>1499</u>	Increased, activation of T (T) helper (h) type 2 cells	STAT-6	mediated Th2 response		В	STAT-6	A549	RNA-seq	Misvik (samples from SU)

H2020-NMBP-2017	PATROLS	Deliverable D2.5	
Lung			
inflammatio	1		

H2020-NMBP-2017PATROLSDeliverable D2.52)Sheet 2: MIEs/KEs, biomarkers and assays for lung fibrosis.

Lung fibrosis	Person of contact	sybille van den Brule (sybille.vandenbrule@uclouvain.be)	
	KE based on:	https://aopwiki.org/aops/173	
	Markers based	Vietti et al, 2016 (DOI 10.1186/s12989-016-0123-y)	
	on:	Nymark et al. 2018 (DOI: 10.1093/toxsci/kfx252)	https://www.wikipathways.org/instance/WP3624

KE that a	ire not covered by l	PATROLS in vitro strate	egy			To be filled by partners				
KE number	KE	markers	cell type	assay	Type of evidence	markers	cell type	assay	partner	
1495	Interaction with the resident cell membrane components	<u>Toll-like receptor</u> <u>signaling WP75</u> (CXCL8, CCL3, CCL4, CCL5)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics , whole genome or reduced feature high- throughput transcriptomics	E	All	A549	RNA-seq	Misvik (samples from SU)	
		DAMPS/alarmins (IL-1α)	macrophages	ELISA, qRT-PCR	C					
<u>1496</u>	Secretion of proinflammatory and profibrotic mediators	ROS	macrophage, fibroblast	EPR (acellular), heme oxygenase I (cellular, ELISA, RT-PCR),	С	ROS	A549, NCI-H441, d_THP-1/primary macrophages	CM-H2DCFDA - Invitrogen (Cat#C6827)	SU	
		р38 МАРК	fibroblast	WB	С					
		NFK-B	macrophage	WB, immunofluo, transcriptomics	C					
		NADPH oxidase	macrophage	measure IL-1β in presence of inhibitors (ex: DPI)	В					

H2020-NMBP-2017	PA	ATROLS	D	eliverable	D2.5			
	inflammasomme	macrophage, epithelial cell	measure IL-1β in presence of inhibitors	В, С	IL-1β (+ IL-18)	THP-1	WST-1 (Roche), IL-1β (ELISA); IL-18 (ELISA)	RIVM
	MAP kinase	epithelial cell	WB	С				
	ΙL-1β	macrophage, epithelial cell	ELISA, WB (RT- PCR), transcriptomics	А, В	ΙL-1β	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
					IL-1β	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts (MRC- 5)	ELISA, R&D Systems (Cat#DY201)	AMI
	ΤΝΕ-α	macrophage	ELISA, WB (RT- PCR)	С	ΤΝΕ-α	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages co-culture epithelial cells (A549)- macrophages	ELISA, R&D Systems (Cat#DY210)	ΑΜΙ

H2020-NMB	3P-2017	PAT	FROLS	D	eliverable	D2.5			
							(THP-1)- fibroblasts (MRC- 5)		
						TNF-α	d_THP-1/Primary macrophages	R&D Systems (Cat#DY210)	SU
		IL-18	epithelial cell	ELISA, WB (RT- PCR)	С	IL-18	THP-1	eBioscience (Thermo Fisher)	RIVM
		IL-8	epithelial cell	ELISA, WB (RT- PCR)	С	IL-8	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts (MRC- 5)	ELISA, R&D Systems (Cat#DY208)	AMI
						IL-8	A549, NCI-H441	R&D Systems (Cat#DY208)	SU
		TGF-β	macrophage, fibroblast, epithelial cell	ELISA, WB (RT- PCR), transcriptomics	В, С	TGF-β1, 2, 3, R1, R2	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
						ΤGF-β1	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages	ELISA, R&D Systems (Cat#DY240)	AMI

H2020-I	12020-NMBP-2017 PATROLS		D	eliverable	D2.5				
							co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts (MRC- 5)		
		PDGF	macrophage, fibroblast, epithelial cell	ELISA, WB (RT- PCR), transcriptomics	С	PDGFA and B	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
		Cytokine and inflammatory response WP530 (PDGFA, CXCL2, CSF3, CSF2, IL12B, IL13, IL4, IL5, IL6)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E	-			
		Chemokine signaling WP3929 (CCL2, CCL11, CCR2, CCR3)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E	CCL2	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
						All	A549	RNA-seq	Misvik (samples from SU)
<u>1497</u>	Recruitment of inflammatory cells								
<u>1498</u>	Loss of alveolar capillary membrane integrity	Transepithelial/tran sendothelial electrical resistance (TEER)	endothelial and epithelial cell	measuring ohmic resistance or impedance	C	TEER	EpiAlveolar™ (MatTek) without macrophages	EVOM2 + electrodes (https://www. wpi- europe.com/pr oducts/cell- and- tissue/teer-	ΑΜΙ

H2020-I	NMBP-2017	PA	TROLS	C	Deliverable	D2.5			
							EpiAlveolar [™] (MatTek) with macrophages	measurement/ evom2.aspx)	
						TEER	A549, NCI-H441	EVOM2 + electrodes (https://www. wpi- europe.com/pr oducts/cell- and- tissue/teer- measurement/ evom2.aspx)	SU
		ROS	macrophage, fibroblast	EPR (acellular), heme oxygenase I (cellular, ELISA, RT-PCR),	C				
<u>1499</u>	Activation of T (T) helper (h) type 2 cells	Chondrocyte differentiation WP474 (CTGF, TGFA, GREM1, ATP11A)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E	CTGF	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
		Matrix metalloproteinases WP129 (MMP9, MMP2, TIMP1)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E	MMP-9, TIMP-1	human lung fibroblasts (MRC- 5 and CRL1490)	quantitative RT-PCR	LTAP

H2020-NMBP-2017	PAT	TROLS	D	eliverable	D2.5			
					MMP-2 and 9, TIMP-1	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
	<u>TGFB signaling</u> <u>WP560 (SKIL, SPP1)</u>	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E				
	Differentiation pathway WP2848 (EFG, IGF1, HGF, FGF1, FGF2, FGF7)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E				
	Cytokine and inflammatory response WP530 (PDGFA, CXCL2, CSF3, CSF2, IL12B, IL13, IL4, IL5, IL6)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E				
	Chemokine signaling WP3929 (CCL2, CCL11, CCR2, CCR3)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E	CCL2, CCL11	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
	Leukocyte/Myeloid cell differentiation GO: 0045637/GO: 1902105 (CALCA, CEBPB)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E				
	TGF-β	macrophage, fibroblast, epithelial cell	ELISA, WB (RT- PCR), transcriptomics	B, C, E	TGF-β1, 2, 3, R1, R2	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
					ΤGF-β	epithelial cells monocultures, co-cultures of epithelial cells-	ELISA, R&D Systems (Cat#DY240)	AMI

H2020-N	NMBP-2017	PA	TROLS	D	eliverable	D2.5			
							macrophages- (fibroblasts)		
		PDGF	macrophage, fibroblast, epithelial cell	ELISA, WB (RT- PCR), transcriptomics	С, Е	PDGFA and B	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
<u>1500</u>	Fibroblast proliferation and myofibroblast differentiation	Smad	fibroblast, epithelial cell	WB	C	Smad2, 3, 4, 6, 7	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
		ERK1/2	fibroblast	WB	А				
		fibroblast proliferation	fibroblast	WST-1, CyQUANT, MTT, Trypan blue exclusion,	A	Proliferation	human lung fibroblasts (MRC- 5 and CRL1490)	WST-1 (Roche)	LTAP
		fibroblast differentiation (α- SMA)	fibroblast	RT-PCR, WB, immunofluo	C	α-SMA	human lung fibroblasts (MRC- 5 and CRL1490)	quantitative RT-PCR	LTAP
						α-SMA	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
		EMT (ZO-1, SP-C, E- Cad, fibronectin, FSP-1, α-SMA, vimentin)	epithelial cells	RT-PCR, WB, immunofluo	С	Vimentin	EpiAlveolar (with or without macrophages) and co-culture (A549+MRC- 5+THP-1)	Vimentin (Immunostainin g, chicken polyclonal anti- vimentin antibody, abcam, ab24525)	AMI

H2020-NMBP-201	7 PA	TROLS	D	eliverable	e D2.5			
					Fibronectin	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts (MRC- 5)	Fibronectin ELISA, R&D Systems (Cat#DY1918- 05)	AMI
	MAPK signaling WP382	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E				
	p38 MAPK WP400	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E				
	<u>TGFB signaling</u> <u>WP560 (SKIL, SPP1)</u>	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E				
	TGF-β	macrophage, fibroblast, epithelial cell	ELISA, WB (RT- PCR), transcriptomics	B, C, E	TGF-β1, 2, 3, R1, R2	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
					TGF-β	epithelial cells monocultures, co-cultures of epithelial cells- macrophages- (fibroblasts)	ELISA, R&D Systems (Cat#DY240)	ΑΜΙ
	PDGF	macrophage, fibroblast, epithelial cell	ELISA, WB (RT- PCR), transcriptomics	С, Е	PDGFA and B	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays	LTAP

H2020-I	NMBP-2017	PA	TROLS	D	eliverable	D2.5			
								human fibrosis (Qiagen)	
		Chondrocyte differentiation WP474 (CTGF, TGFA, GREM1, ATP11A)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E	CTGF	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
		Differentiation pathway WP2848 (EFG, IGF1, HGF, FGF1, FGF2, FGF7)	epithelial cell (e.g. BEAS-2B, A549)	transcriptomics	E	HGF	human lung fibroblasts (MRC- 5 and CRL1490)	RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP
		-				All	A549	RNA-seq	Misvik (samples from SU)
<u>1501</u> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Extracellular matrix deposition	Collagen production	fibroblast	Collagen I and III (RT-PCR and WB), Sircol	A	Collagen I and III	human lung fibroblasts (MRC- 5 and CRL1490)	quantitative RT-PCR	LTAP
				assay		IIIfibroblasts (MRC- 5 and CRL1490)RT-PCRCollagen I and IIIhuman lung fibroblasts (MRC- 5 and CRL1490)RT2 Profiler PCR Arrays human fibrosis (Qiagen)	LTAP		
						Collagen I	EpiAlveolar [™] (MatTek) without macrophages EpiAlveolar [™] (MatTek) with macrophages co-culture epithelial cells (A549)- macrophages (THP-1)- fibroblasts (MRC- 5)	ELISA, R&D Systems (Cat#DY6220-5)	AMI

H2020-	NMBP-2017	PAT	FROLS	D	eliverable D2.5		
<u>1458</u>	Pulmonary						
	<u>fibrosis</u>						

H2020-NMBP-2017PATROLSDeliverable D2.53)Sheet 3: MIEs/KEs, biomarkers and assays for lung cancer.

Lung cancer	Person of contact	Ulla Birgitte Vogel (UBV@nfa.dk)
	KE based on: Markers based	https://aopwiki.org/events/378 PMID: 18618583
	on:	1 1010305

KE that a	are not covered by l	PATROLS in vitro strat		To be filled by p	To be filled by partners				
KE number	KE	markers	cell type	assay	Type of evidence	markers	cell type	assay	partner
	KE0: agglomerate-size dependent alveolar deposition of insoluble particles		lung tissue	size distribution during aerosolisation, physico- chemical properites including solubility, specific surface area, size, shape	В				
	MIE: accummulation of particles in lung	Lung burden	lung tissue	modelling	В				
	KE1A: particle surface area dependent inflammation	increased neutrophil influx in BAL, increased expression of proinflammatory cytokines		in vitro assays for cytokine expression and release	В	Cytokines/Che mokines	A549, NCI-H441, macrophages (co-cultures of both)	ELISA	SU

H2020-I	NMBP-2017	PA	TROLS	D	eliverable	D2.5			
	KE 1B: particle- dependent generation of ROS	particle-surface generated ROS	all cell types from lung	in vitro and acellular assays of ROS	A,B	Oxygen centred radicals	A549, NCI-H441, macrophages (co-cultures of both)	DCFH-DA (cells and cell-free), PCR	SU
	KE1C: release of genotoxic constitutients	DNA adducts, oxidative DNA damage, DNA	all cell types from lung	DNA adducts	В	80HGG	A549, NCI-H441	ELISA	SU
	trom NPS le PAH,	strand breaks				80HGG	A549, Beas-2B	80HG staining	Misvik
	toxic metals ect					gamma-H2AX	A549, Beas-2B	gamma-H2AX staining	Misvik
						All	A549	RNA-seq	Misvik (samples from SU)
	KE2: secondary ROS generation (induced by inflammation)	cellular ROS			А, В	ROS	A549, NCI-H441	CM-H2DCFDA - Invitrogen (Cat#C6827)	SU
	KE3: genotoxicity (direct genotoxicity, ROS-mediated genotoxicity (direct and indirect))	DNA adducts, oxidative DNA damage, DNA strand breaks	all cell types from lung including macrophages, epithelial cells	comet assay: OECD TG488: In vivo alkaline single-cell gel electrophoresis assay for DNA strand breaks (comet assay), (2014, 2016)	В	DNA Damage	A549, NCI-H441	COMET assay	SU
<u>185</u>	increase, Mutations	Mutations	all cell types from lung	OECD TG 489: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene	A,B				

H2020-	NMBP-2017	PA	TROLS	D	eliverable	D2.5			
		Mutations	all cell types from lung	OECD: 490 (2015, 2016), Transgenic rodent (TGR) somatic and germ cell gene mutation assays	A,B				
						DNA Damage	A549, NCI-H441	Micronucleus assay	SU
<u>376</u>	<u>Increased,</u> Induced <u>Mutations in</u> Critical Genes	Mutations	all cell types from lung	OECD TG 489: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene	A,B				
		Mutations	all cell types from lung	OECD: 490 (2015, 2016), Transgenic rodent (TGR) somatic and germ cell gene mutation assays	A,B				
_	Lung cancer								

H2020-NMBP-2017PATROLSDeliverable D2.54)Sheet 4: MIEs/KEs, biomarkers and assays for lung mesothelioma.

Lung mesothelioma	Person of contact	sybille van den Brule (sybille.vandenbrule@uclouvain.be)
	KE based on:	https://aopwiki.org/aops/171
		Kuempel et al 2017 (doi: 10.1080/10408444.2016.1206061)
		Chernova et al 2017 (doi: 10.1016/j.cub.2017.09.007)
	Markers based	Chernova et al 2017 (doi: 10.1016/j.cub.2017.09.007)
	on:	
		Kuempel et al 2017 (doi: 10.1080/10408444.2016.1206061)
		Bononi et al 2015 (DOI:10.1586/17476348.2015.1081066)
		Mohr et al 2005 (PMID: 16316830)

KE that are no	ot covered by PATRC	LS in vitro strategy				To be	To be filled by partners				
KE number	KE	markers	cell type	assay	Type of evidence	mark	ers	cell type	assay	partner	
<u>1086</u>	<u>Cytotoxicity</u> (<u>pleura or</u> <u>peritoneum)</u>	cell viability and damage, apoptosis?	mesothelial cells	WST-1, LDH activity, apoptotic markers?	?						
<u>1088</u>	Oxidative Stress	HMOX-1 induction	mesothelial cells	qRT-PCR	С						
		8-hydroxy-2'- deoxyguanosine (8- OHdG)	mesothelial cells, fibroblasts, macrophages?	modified comet assay with enzymes, ELISA	C	8010	iG	A549, NCI- H441, macrophages (co-cultures of both)	COMET	SU	
<u>1087</u>	<u>inflammation</u>	alarmins (HMGB-1) pro-inflammatory cytokines (IL-6, IL-1β, TNF-α)	mesothelial cells mesothelial cells, fibroblasts, inflammatoy cells (macrophages and lymphocytes)	ELISA ELISA	C C	IL-6, Ι 1β, ΤΙ α	L- NF-	fibroblasts, macrophages	ELISA R&D Systems (Cat#DY206, DY201, DY210)	AMI	

H2020-NMBP-2017	PATROLS	5	Deliver	able D2.5		
	inflammatory	mesothelial cells,	mRNA array,	D, F		
	signature (Chernova	fibroblasts,	NGS	(observe		
	2017, not clearly	inflammatoy		d in		
	described)	cells		mouse		
		(macrophages		asbestos		
		and		mesothel		
		lymphocytes)		ioma)		
	STAT3 activation	fibroblasts,	Antibody-	C, F		
	(phosphorylation)	inflammatoy	based array,	(observe		
		cells	Western blot,	d in		
		(macrophages		human		
		and		mesothel		
		lymphocytes)		ioma)		
	STAT3 expression	mesothelial cells,	qRT-PCR,	С		
		fibroblasts,				
		inflammatoy				
		cells				
		(macrophages				
		and				
		lymphocytes)				
	Src kinases activation	mesothelial cells,	Antibody-	C, F		
	(phosphorylation)	fibroblasts,	based array,	(observe		
		inflammatoy	Western blot,	d in		
		cells		human		
		(macrophages		mesothel		
		and		ioma)		
		lymphocytes)				
	Akt activation	mesothelial cells,	Antibody-	C, F		
	(phosphorylation)	fibroblasts,	based array,	(observe		
		inflammatoy	Western blot,	d in		
		cells		human		
		(macrophages		mesothel		
		and		ioma)		
		lymphocytes)				

H2020-NMBP	P-2017	PATROLS	5	Delive	rable D2.5	5				
		mTOR activation	mesothelial cells,	Antibody-	C, F					
		(phosphorylation)	fibroblasts,	based array,	(observe					
			inflammatoy	Western blot,	d in					
			cells		human					
			(macrophages		mesothel					
			and		ioma)					
			lymphocytes)							
		ERK1/2 activation	mesothelial cells	Antibody-	C, F					
		(phosphorylation)		based array,	(observe					
				Western blot,	d in					
					human					
					mesothel					
					ioma)					
		IL-6 expression	mesothelial cells,	qRT-PCR,	С		IL-6	A549, NCI-	qRT-PCR	SU
			fibroblasts,					H441,		
			inflammatoy					macrophages		
			cells					(co-cultures of		
			(macrophages					both)		
			and							
			lymphocytes)							
<u>1032</u>	Secretion local	EGF?, PDGF, VEGF	mesothelial cells	ELISA	C, F					
	growth factors				(observe					
					d in					
					human					
					mesothel					
					ioma)					
<u>1089</u>	Cell Proliferation	cell proliferation	mesothelial cells,	WST-1, other	C					
	(mesothelium)		fibroblasts?	assays?						
		EGF receptor	mesothelial cells	Western blot	F (Pache					
					1998,					
					PMID:					
					9466557)					
		Histone H3	mesothelial cells,	Western blot	C					
		phosphorylation	fibroblasts?	(relevant in						
				vitro?)						

H2020-NMBP	-2017	PATROLS	5	Delive	rable D2.5	5				
	Genotoxicity	8-hydroxy-2'-	mesothelial cells,	modified	С		80HGG	A549, NCI-	COMET	SU
		deoxyguanosine (8-	fibroblasts,	comet assay				H441,		
		OHdG)	macrophages?	with				macrophages		
				enzymes,				(co-cultures of		
				ELISA				both)		
		DNA damage	mesothelial cells	comet assay	С, А					
					(Kuempe					
					l 2017)					
		mutagenicity	mesothelial cells	micronuclei	С					
	Genome	p16 and p19	mesothelial cells,	Antibody-	C, F					
	instability	expression (products	fibroblasts?	based array,	(observe					
		of the tumor		Western blot,	d in					
		suppressor gene		qRT-PCR	human					
		Cdkn2a)			mesothel					
					ioma)					
		Cdkn2a (Ink4a/Arf)	mesothelial cells,	Bisulfite	C, F					
		hypermethylation	fibroblasts?	sequencing	(observe					
					d in					
					human					
					mesothel					
					ioma)					
<u>1090</u>	mesothelioma									

H2020-NMBP-2017 PATROLS Deliverable D2.5 **Sheet 5: MIEs/KEs, biomarkers and assays for liver inflammation.**

Liver Person of contact Penny Nymark (penny.nymark@ki.se) fibrosis KE based on: https://aopwiki.org/aops/144 Gerloff et al. 2016, doi.org/10.1016/j.comtox.2016.07.001 Gerloff et al. 2017, doi: 10.1038/ncomms15932 Markers based on: Kohonen et al. 2017, doi: 10.1038/ncomms15932 Pathways related to the PTGS components are derived from Supplemental Data 4b. Genes for each components are available in Supplemental Data 2)

Red pathways indicate overlap with AOPwiki description of the KE.

KE that a	re not covered by PAT	ROLS in vitro strategy				To be fille	ed by partners		
KE					Type of	markers	cell type	assay	partner
number	KE	markers	cell type	assay	evidence				
<u>1539</u>	Endocytotic								
	<u>lysosomal uptake</u>								
<u>898</u>	<u>Lysosome,</u>								
	Disruption								
209	Oxidative Stress,	PTGS component G, H and N (in	Hepatocyte	transcripto	С	Oxidativ	HepG2	RT-PCR Biorad	SU
	<u>Increase</u>	total 242 genes related to the	(e.g. HepG2,	mics,		e Stress	hepatocyte	Hepatocarcinom	
		following IPA ToxList pathways:	HepRG)	whole			monoculture	a Panel (AOP	
		Cardiac Hypertrophy		genome or			HepG2/Kupffer	Genes of	
		Liver Necrosis/Cell Death		reduced			cell co-culture	Interest: JUN,	
		Liver Proliferation		feature				NFKB1, SOD, HIF-	
		Cardiac Fibrosis		high-				1α and MAPK)	
		Mechanism of Gene Regulation by		throughpu		ROS	HepG2	CM-H2DCFDA -	SU
		Peroxisome Proliferators via		t			hepatocyte	Invitrogen	
		PPARa		transcripto			monoculture	(Cat#C6827)	
		Renal Necrosis/Cell Death		mics of			HepG2/Kupffer		
		Increases Liver		PTGS			cell co-culture		
		Hyperplasia/Hyperproliferation							

H2020-NMBP-2017	PATROLS	Delivera	ble D2.5				
	Primary Glomerulonephritis	(1331		Oxidativ	HepG2 BAC-	Confocal	Leiden
	Biomarker Panel (Human)	genes)		e stress	GFP reporters	microscopy	
	RAR Activation			response	(SRXN1,		
	Hepatic Cholestasis				HMOX1, NQO1,		
	Cardiac Necrosis/Cell Death				NRF2, KEAP1)		
	VDR/RXR Activation						
	Oxidative Stress						
	(ICAM1,JUN,NFKB2,NFKB1)						
	Increases Cardiac Dysfunction						
	Acute Renal Failure Panel (Rat)						
	Increases Liver Damage			Lipid	3D human	Abcam	HWU
	NRF2-mediated Oxidative Stress			peroxida	primary		
	Response			tion	multicellular		
	p53 Signaling			(TBARS)	MT		
	Hepatic Stellate Cell Activation						
	NF-kB Signaling						
	Hypoxia-Inducible Factor Signaling						
	Aryl Hydrocarbon Receptor						
	Signaling						
	Increases Heart Failure						
	PPARa/RXRa Activation						
	LXR/RXR Activation						
	Hepatic Fibrosis)						

H2020-N	NMBP-2017	PATROLS		Delivera	ble D2.5				
<u>177</u>	Mitochondrial	PTGS component I (in total 76	Hepatocyte	transcripto	С	Mitocho	HepG2	RT-PCR Biorad	SU
	dysfunction	genes related to the following IPA	(e.g. HepG2,	mics,		ndrial	hepatocyte	Hepatocarcinom	
		ToxList pathways: Increases Liver	HepRG)	whole		Dysfunct	monoculture	a Panel (AOP	
		Damage		genome or		ion	HepG2/Kupffer	Genes of	
		Renal Necrosis/Cell Death		reduced			cell co-culture	Interest: IFNG	
		Cardiac Hypertrophy		feature				and FGF2)	
		Hepatic Fibrosis		high-					
		Cardiac Fibrosis		throughpu					
		VDR/RXR Activation		t					
		TGF-b Signaling		transcripto					
		Liver Proliferation		mics of					
		Cardiac Necrosis/Cell Death		PTGS					
		Increases Renal Damage		(1331					
		Hepatic Stellate Cell Activation		genes)					
		Liver Necrosis/Cell Death				Casnase	3D human	Promega	H\\\/
		Decreases Transmembrane				3/7	nrimary	Попеда	1100
		Potential of Mitochondria and				assav	multicellular		
		Mitochondrial Membrane				ussuy	MT		
		(TGM2,IFNG,BNIP3,FGF2,MAPK9)							
		Increases Renal Proliferation							
		Cell Cycle: G1/S Checkpoint							
		Regulation							
		Increases Cardiac Dilation							
		Anti-Apoptosis							
		Hepatic Cholestasis							
		Increases Cardiac Dysfunction							
		Increases Glomerular Injury)							

H2020-N	NMBP-2017	PATROLS		Delivera	ble D2.5				
<u>55</u>	Cell injury/death	PTGS component G, H, N and I (in	Hepatocyte	transcripto	C	Cell	HepG2	RT-PCR Biorad	SU
		total 299 genes related to the	(e.g. HepG2,	mics,		Death	hepatocyte	Hepatocarcinom	
		following IPA ToxList pathways:	HepRG)	whole			monoculture	a Panel (AOP	
		Cardiac Hypertrophy		genome or			HepG2/Kupffer	Genes of	
		Liver Necrosis/Cell Death		reduced			cell co-culture	Interest: IFNG,	
		(ADM,IFNG,NFKBIA,SMAD3,CDKN		feature				CDKNIA and	
		1A,MAPK9,PTGS2,SERPINE1)		high-				PTGS2)	
		Liver Proliferation		throughpu					
		Cardiac Fibrosis		t					
		Mechanism of Gene Regulation by		transcripto					
		Peroxisome Proliferators via		mics of					
		PPARa		PTGS					
		Renal Necrosis/Cell Death		(1331					
		Increases Liver		genes)					
		Hyperplasia/Hyperproliferation							
		Primary Glomerulonephritis							
		Biomarker Panel (Human)				Cell	HepG2	Trypan Blue	SU
		RAR Activation				Death/C	hepatocyte	exclusion (Sigma	
		Hepatic Cholestasis				ytotoxici	monoculture	- T8154)	
		Cardiac Necrosis/Cell Death				ty	HepG2/Kupffer		
		VDR/RXR Activation					cell co-culture		
		Oxidative Stress							
		Increases Cardiac Dysfunction							
		Acute Renal Failure Panel (Rat)							
		Increases Liver Damage							
		NRF2-mediated Oxidative Stress				Nerverie	11	Due vetationer te altala	t states
		Response				Necrosis	нерби	Propialum Iodiae	Leiden
		p53 Signaling				/apoptos		/ Annexinv	
		Hepatic Stellate Cell Activation				15			
		NF-kB Signaling						microscopy	
		Hypoxia-Inducible Factor Signaling						пистовсору	
		Aryl Hydrocarbon Receptor							
		Signaling							

H2020-NMBP-2017	PATROLS	Deliverable D2.5				
	Increases Heart Failure PPARa/RXRa Activation LXR/RXR Activation Hepatic Fibrosis TGF-b Signaling Increases Renal Damage Decreases Transmembrane Potential of Mitochondria and Mitochondrial Membrane Increases Renal Proliferation Cell Cycle: G1/S Checkpoint Regulation Increases Cardiac Dilation Anti-Apoptosis Increases Glomerular Injury)		Adenylat e kinase AND live/dea d staining AND hiostolog Y	3D human primary multicellular MT	Lonza AND abcam AND NA	HWU
87 Cytokine, Release			IL-8, IL-6 & TNF-α IL1B, IL8,	HepG2 hepatocyte monoculture HepG2/Kupffer cell co-culture 3D human	R&D Systems (Cat#DY208) R&D Systems (Cat#DY206) R&D Systems (Cat#DY210) Biotechne flex	SU HWU
			IL10, IFN-Υ, TNF, IL6	primary multicellular MT	sets	
901 Inflammatory cells, Infiltration						

H2020-I	NMBP-2017	PATROLS		Deliveral	ble D2.5				
902	Liver, Inflammation	PTGS component G and N* (in	Hepatocyte	transcripto	С	Liver	HepG2	RT-PCR Biorad	SU
		total 162 genes related to the	(e.g. HepG2,	mics,		Inflamm	hepatocyte	Hepatocarcinom	
		following IPA ToxList pathways:	HepRG)	whole		ation	monoculture	a Panel (AOP	
		Cardiac Hypertrophy		genome or			HepG2/Kupffer	Genes of	
		Liver Necrosis/Cell Death		reduced			cell co-culture	Interest:	
		Liver Proliferation		feature				TNFAIP3, IL1B	
		Cardiac Fibrosis		high-				and NFKB1)	
		Mechanism of Gene Regulation by		throughpu					
		Peroxisome Proliferators via		t					
		PPARa		transcripto					
		Renal Necrosis/Cell Death		mics of					
		Increases Liver		PTGS					
		Hyperplasia/Hyperproliferation		(1331					
		Primary Glomerulonephritis		genes)					
		Biomarker Panel (Human)				IL1B, IL8,	3D human	Biotechne flex	HWU
		RAR Activation				IL10,	primary	sets	
		Hepatic Cholestasis				IFN-Ƴ,	multicellular		
		Cardiac Necrosis/Cell Death				TNF, IL6	MT		
		VDR/RXR Activation							
		Oxidative Stress							
		Increases Cardiac Dysfunction							
		Acute Renal Failure Panel (Rat)							
		Increases Liver Damage							
		NRF2-mediated Oxidative Stress							

H2020-NMBP-2017	PATROLS	Delivera	ble D2.5				
	Response			NFkB	HepG2 BAC-	Confocal	Leiden
	p53 Signaling			signaling	GFP reporters	microscopy	
	Hepatic Stellate Cell Activation				for NFkB		
	NF-kB Signaling				signaling		
	(TNIP1,NFKBIA,NFKBIE,RELB,TNFA				(ICAM1, A20,		
	IP3,IL1B,NFKB2,NFKB1)				RelA)		
	Hypoxia-Inducible Factor Signaling						
	Aryl Hydrocarbon Receptor						
	Signaling						
	Increases Heart Failure						
	PPARa/RXRa Activation						
	Hepatic Fibrosis						
	LXR/RXR Activation)						

*strongly related to the probability of the final AO happening in vivo

H2020-NMBP-2017 PATROLS Deliverable D2.5 6) Sheet 6: MIEs/KEs, biomarkers and assays for liver fibrosis.

Liver fibrosis Person of contact Penny Nymark (penny.nymark@ki.se) fibrosis KE based on: https://aopwiki.org/aops/144 Gerloff et al. 2016, doi.org/10.1016/j.comtox.2016.07.001 Gerloff et al. 2016, doi.org/10.1016/j.comtox.2016.07.001 markers based on: Kohonen et al. 2017, doi: 10.1038/ncomms15932. (Pathways related to the PTGS components are derived from Supplemental Data 4b. Genes for each components are available in Supplemental Data 2) Red pathways indicate overlap with AOPwiki description of the KE.

KE that a	re not covered by PAT	ROLS in vitro strategy		To be filled by partners					
KE					Type of	markers	cell type	assay	partner
number	KE	markers	cell type	assay	evidence				
<u>1539</u>	Endocytotic								
	lysosomal uptake								
<u>898</u>	Disruption,								
	<u>Lysosome</u>								
<u>177</u>	N/A, Mitochondrial	PTGS component I (in total 76	Hepatocyte	transcripto	С	Mitocho	HepG2	RT-PCR Biorad	SU
	dysfunction 1	genes related to the following IPA	(e.g. HepG2,	mics,		ndrial	hepatocyte	Hepatocarcinom	
		ToxList pathways: Increases Liver	HepRG)	whole		Dysfunc	monoculture	a Panel (AOP	
		Damage		genome or		ion	HepG2/Kupffer	Genes of	
		Renal Necrosis/Cell Death		reduced			cell co-culture	Interest: IFNG	
		Cardiac Hypertrophy		feature				and FGF2)	
		Hepatic Fibrosis		high-					

H2020-NMBP-2017	7 PATROLS	Deliverable D2.5				
	Cardiac Fibrosis	throughpu	Caspase	HepG2	Caspase-3/7-glo	Misvik
	VDR/RXR Activation	t	3/7		assay	
	TGF-b Signaling	transcripto	assay			
	Liver Proliferation	mics of				
	Cardiac Necrosis/Cell Death	PTGS				
	Increases Renal Damage	(1331				
	Hepatic Stellate Cell Activation	genes)				
	Liver Necrosis/Cell Death					
	Decreases Transmembrane					
	Potential of Mitochondria and					
	Mitochondrial Membrane					
	(TGM2,IFNG,BNIP3,FGF2,MAPK9)					
	Increases Renal Proliferation					
	Cell Cycle: G1/S Checkpoint					
	Regulation					
	Increases Cardiac Dilation					
	Anti-Apoptosis					
	Hepatic Cholestasis					
	Increases Cardiac Dysfunction					
	Increases Glomerular Injury)					

H2020-N	MBP-2017	PATROLS		Delivera	ble D2.5				
<u>55</u>	N/A, Cell	PTGS component G, H, N and I (in	Hepatocyte	transcripto	С	Cell	HepG2	RT-PCR Biorad	SU
	<u>injury/death</u>	total 299 genes related to the	(e.g. HepG2,	mics,		Death	hepatocyte	Hepatocarcinom	
		following IPA ToxList pathways:	HepRG)	whole			monoculture	a Panel (AOP	
		Cardiac Hypertrophy		genome or			HepG2/Kupffer	Genes of	
		Liver Necrosis/Cell Death		reduced			cell co-culture	Interest: JUN,	
		(CXCL3,TNIP1,JUN,NFKBIA,IER3,CE		feature				RXRA and	
		BPB,CFLAR,RXRA,NFKB1)		high-				NFKB1)	
		Liver Proliferation		throughpu					
		Cardiac Fibrosis		t					
		Mechanism of Gene Regulation by		transcripto					
		Peroxisome Proliferators via		mics of					
		PPARa		PTGS					
		Renal Necrosis/Cell Death		(1331					
		Increases Liver		genes)					
		Hyperplasia/Hyperproliferation							
		Primary Glomerulonephritis							
		Biomarker Panel (Human)							
		RAR Activation							
		Hepatic Cholestasis				Coll	HopC2	Trupan Pluo	CI I
		Cardiac Necrosis/Cell Death				Death/C	hepdz	avelusion (Sigma	50
		VDR/RXR Activation				vtotovici	monoculture	- T8154)	
		Oxidative Stress				ty	HenG2/Kunffer	- 10134)	
		Increases Cardiac Dysfunction				L Y	cell co-culture		
		Acute Renal Failure Panel (Rat)					cen co-culture		
		Increases Liver Damage							
		NRF2-mediated Oxidative Stress							
		Response							
		p53 Signaling							
		Hepatic Stellate Cell Activation							
		NF-kB Signaling							
		Hypoxia-Inducible Factor Signaling							
		Aryl Hydrocarbon Receptor							
		Signaling				Necrosis	HepG2	Propidium iodide	Leiden
		Increases Heart Failure				/apoptos		/ AnnexinV	
		PPARA/KXRA ACTIVATION				is		staining with	

H2020-NMBP-2017	PATROLS	Deliveral	ble D2.5				
	LXR/RXR Activation					Confocal	
	Hepatic Fibrosis					microscopy	
	TGF-b Signaling						
	Increases Renal Damage			Coll	HonC2	CollTitor Clo	Micyik
	Decreases Transmembrane			viability	перог		IVIISVIK
	Potential of Mitochondria and			Coll	HonC2	assay Dani staining	Micyik
	Mitochondrial Membrane			Number	перог	Dapi Stanning	IVIISVIK
	Increases Renal Proliferation			Number	11		N.41. 11
	Cell Cycle: G1/S Checkpoint			Nucleic	Нерб2	80HG staining	IVIISVIK
	Regulation			acid			
	Increases Cardiac Dilation			oxidative			
	Anti-Apoptosis			DNIA	llonC2		Miovik
	Increases Glomerular Injury)			damago	перог	gamma-nZAX	IVIISVIK
				Anontosi	LlonC2		Miovik
				Apoptosi	перог	Caspase-3/7-gio	IVIISVIK
				5		assay	

H2020-NMBP-2017	PATROLS		Delivera	ble D2.5					
1493 Increased Pro-	PTGS component G and N (in	Hepatocyte	transcripto	С	l	Liver	HepG2	RT-PCR Biorad	SU
inflammatory	total 162 genes related to the	(e.g. HepG2,	mics,			Inflamm	hepatocyte	Hepatocarcinom	
mediators	following IPA ToxList pathways:	HepRG)	whole		a	ation	monoculture	a Panel (AOP	
	Cardiac Hypertrophy		genome or				HepG2/Kupffer	Genes of	
	Liver Necrosis/Cell Death		reduced				cell co-culture	Interest:	
	Liver Proliferation		feature					TNFAIP3, IL1B,	
	Cardiac Fibrosis		high-					IL8 and NFKB1)	
	Mechanism of Gene Regulation by		throughpu						
	Peroxisome Proliferators via		t						
	PPARa		transcripto						
	Renal Necrosis/Cell Death		mics of						
	Increases Liver		PTGS						
	Hyperplasia/Hyperproliferation		(1331						
	Primary Glomerulonephritis		genes)						
	Biomarker Panel (Human)								
	RAR Activation								
	Hepatic Cholestasis								
	Cardiac Necrosis/Cell Death								
	VDR/RXR Activation					1-8 11-6	HenG2	R&D Systems	SU
	Oxidative Stress					$8, TNE-\alpha$	henatocyte	(Cat#DV208)	50
	Increases Cardiac Dysfunction						monoculture	R&D Systems	
	Acute Renal Failure Panel (Rat)						HenG2/Kunffer	(Cat#DY206)	
	Increases Liver Damage						cell co-culture	R&D Systems	
	NRF2-mediated Oxidative Stress							(Cat#DY210)	
	Response							(0000001220)	
	p53 Signaling								
	Hepatic Stellate Cell Activation								
	NF-kB Signaling								
	1	1	1		1 1				

H2020-N	NMBP-2017	PATROLS	Deliveral	ble D2.5				
		(TNIP1,NFKBIA,NFKBIE,RELB,TNFA			NFkB	HepG2 BAC-	Confocal	Leiden
		IP3,IL1B,NFKB2,NFKB1)			signaling	GFP reporters	microscopy	
		Hypoxia-Inducible Factor Signaling				for NFkB		
		Aryl Hydrocarbon Receptor				signaling		
		Signaling				(ICAM1, A20,		
		Increases Heart Failure				RelA)		
		PPARa/RXRa Activation						
		Hepatic Fibrosis						
		LXR/RXR Activation)						
1.40.4	t auto auto							
1494	Leukocyte							
	recruitment/activati							
	on							

H2020-N	MBP-2017	PATROLS		Delivera	ble D2.5				
265	Activation, Stellate	PTGS component G, N and I (in	Hepatocyte	transcripto	С	Stellate	HepG2	RT-PCR Biorad	SU
	<u>cells</u>	total 226 genes related to the	(e.g. HepG2,	mics,		Cell	hepatocyte	Hepatocarcinom	
		following IPA ToxListpathways:	HepRG)	whole		Activatio	monoculture	a Panel (AOP	
		Cardiac Hypertrophy		genome or		n	HepG2/Kupffer	Genes of	
		Liver Necrosis/Cell Death		reduced			cell co-culture	Interest: IL8 and	
		Liver Proliferation		feature				NFKB1)	
		Cardiac Fibrosis		high-					
		Mechanism of Gene Regulation by		throughpu					
		Peroxisome Proliferators via		t					
		PPARa		transcripto					
		Renal Necrosis/Cell Death		mics of					
		Increases Liver		PTGS					
		Hyperplasia/Hyperproliferation		(1331					
		Primary Glomerulonephritis		genes)					
		Biomarker Panel (Human)							
		RAR Activation							
		Hepatic Cholestasis							
		Cardiac Necrosis/Cell Death							
		VDR/RXR Activation							
		Oxidative Stress							
		Increases Cardiac Dysfunction							
		Acute Renal Failure Panel (Rat)							
		Increases Liver Damage							
		NRF2-mediated Oxidative Stress							
		Response				Stellate	3D human	alpha-SMA	HWU / Insphero
		p53 Signaling				activatio	primary	ELISA, LOX	
		Hepatic Stellate Cell Activation				n	multicellular	activity, Col1A1	
		(IL8,PDGFA,NFKB2,NFKB1)					MT containing	expression	
		NF-kB Signaling					stellate cells	, (qPCR), p3np	
		Hypoxia-Inducible Factor Signaling						(procollagen III	
		Aryl Hydrocarbon Receptor						N-terminal	
		Signaling						peptide) ELISA	
		Increases Heart Failure						, , ,	

H2020-N	MBP-2017	PATROLS	Delivera	ble D2.5				
		PPARa/RXRa Activation			Stellate	3D human	Histology -	HWU / Insphero
		Hepatic Fibrosis			activatio	primary	Trichrome	
		TGF-b Signaling			n and	multicellular	Masson staining,	
		(SMAD3,TGFB2,MAPK9,MAP2K3,			Patholog	MT containg	Siriusred staining	
		SMURF2,SERPINE1)			y	stellate cells	with dark field	
		Increases Renal Damage					microscopy;	
		Decreases Transmembrane					collagen 1 and 4	
		Potential of Mitochondria and					staining	
		Mitochondrial Membrane						
		Increases Renal Proliferation						
		Cell Cycle: G1/S Checkpoint						
		Regulation						
		Increases Cardiac Dilation						
		Anti-Apoptosis						
		Increases Glomerular Injury						
		LXR/RXR Activation)						
<u>68</u>	Accumulation,							
1	<u>Collagen</u>							

H2020-NMBP-2017		PATROLS		Delivera	ble D2.5				
<u>344</u>	N/A, Liver fibrosis	PTGS component N and I* (in	Hepatocyte	transcripto	С	Fibrosis	HepG2	RT-PCR Biorad	SU
		total 106 genes related to the	(e.g. HepG2,	mics,			hepatocyte	Hepatocarcinom	
		following IPA ToxList pathways:	HepRG)	whole			monoculture	a Panel (AOP	
		Increases Liver Damage		genome or			HepG2/Kupffer	Genes of	
		Renal Necrosis/Cell Death		reduced			cell co-culture	Interest: IL8 and	
		Cardiac Hypertrophy		feature				IL1B)	
		Hepatic Fibrosis		high-					
		(IL8,ICAM1,PDGFA,IL1B,CXCL2)		throughpu					
		Cardiac Fibrosis		t					
		VDR/RXR Activation		transcripto					
		TGF-b Signaling		mics of					
		Liver Proliferation		PTGS					
		Cardiac Necrosis/Cell Death		(1331					
		Increases Renal Damage		genes)					
		Hepatic Stellate Cell Activation							
		Liver Necrosis/Cell Death							
		Decreases Transmembrane							
		Potential of Mitochondria and							
		Mitochondrial Membrane							
		Increases Renal Proliferation							
		Cell Cycle: G1/S Checkpoint							
		Regulation							
		Increases Cardiac Dilation							
		Anti-Apoptosis							
		Hepatic Cholestasis							
		Increases Cardiac Dysfunction							
		Increases Glomerular Injury							
		PPARa/RXRa Activation							
		Mechanism of Gene Regulation by							
		Peroxisome Proliferators via							

H2020-NMBP-2017 PATROLS		Deliverable D2.5	5		
	PPARa NF-kB Signaling Aryl Hydrocarbon Receptor Signaling Oxidative Stress LXR/RXR Activation RAR Activation)				

*strongly related to the probability of the final AO happening in vivo

H2020-NMBP-2017PATROLSDeliverable D2.57)Sheet 7: MIEs/KEs, biomarkers and assays for liver cancer.

Liver	Person of	Ulla Birgitte Vogel (UBV@nfa.dk)
cancer	contact	
	KE based on:	https://aopwiki.org/events/378
		PMID: 29298701 Modrzynska et al, Part Fibre Toxicol. 2018 Jan 3;15(1):2. doi: 10.1186/s12989-017-0238-9.
	Markers based	PMID: 18618583; Jacobsen et al, Environ Mol Mutagen. 2008 Jul;49(6):476-87. doi: 10.1002/em.20406
	on:	

KE that are not covered by PATROLS in vitro strategy						To be fille	To be filled by partners				
KE number	KE	markers	cell type	assay	Type of evidence	markers	cell type	assay	partner		
KE249, KE257, KE1115, KE1364	MIE: particle surface dependent ROS generation										
<u>1608</u>	<u>Oxidative DNA</u> <u>damage</u>	oxidative DNA damage/DNA adducts/DNA strand breaks in liver tissue	liver cells	oxidative DNA damage/DNA adducts/comet assay/micronucl eus asssay	В	DNA damage, Genotoxi city DNA	HepG2 monoculture HepG2/Kuppfer cell co-culture HepG2 BAC-	Cytokinesis block micronucleus assay Confocal	SU Leiden		
						damage response	GFP reporters for DNA damage response (P21, BTG2, MDM2, P53)	microscopy			
						Oxidative DNA damage	3D human primary multicellular MT	FPG modified Comet assay	HWU		
						Oxidative DNA damage	HepG2 monoculture	80HG staining	Misvik		

H2020-NMBP-2017		PAT	ROLS	Deliverable D2.5					
<u>185</u> <u>376</u>	Increased mutations	Mutations	liver cells	in vitro assay of mutation: OECD TG 488: Transgenic Rodent Somatic and Germ Cell Gene Mutation Assays	А, В, С	DNA strand breaks	HepG2 monoculture	gamma-H2AX staining	Misvik
<u>378</u>	<u>Tumorigenesis,</u> <u>Hepatocellular</u> <u>carcinoma</u>								

PATROLS

7. References

1. Spinu, N., et al., *Development and analysis of an adverse outcome pathway network for human neurotoxicity.* Arch Toxicol, 2019. **93**(10): p. 2759-2772.

2. Ankley, G.T., et al., *Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment.* Environ Toxicol Chem, 2010. **29**(3): p. 730-41.

3. Kleinstreuer, N.C., et al., *Adverse outcome pathways: From research to regulation scientific workshop report.* Regul Toxicol Pharmacol, 2016. **76**: p. 39-50.

4. Villeneuve, D.L., et al., *Adverse outcome pathway networks II: Network analytics.* Environ Toxicol Chem, 2018. **37**(6): p. 1734-1748.

5. Leist, M., et al., *Adverse outcome pathways: opportunities, limitations and open questions.* Arch Toxicol, 2017. **91**(11): p. 3477-3505.

6. Gerloff, K., et al., *The Adverse Outcome Pathway approach in nanotoxicology*. Computational Toxicology, 2017. **1**: p. 3-11.

7. Villeneuve, D.L., et al., *Representing the Process of Inflammation as Key Events in Adverse Outcome Pathways.* Toxicol Sci, 2018. **163**(2): p. 346-352.

8. Landsiedel, R., et al., *Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials.* Part Fibre Toxicol, 2014. **11**: p. 16.

9. Vietti, G., D. Lison, and S. van den Brule, *Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP).* Part Fibre. Toxicol, 2016. **13**(1): p. 11.

10. Pavan, C. and B. Fubini, *Unveiling the Variability of "Quartz Hazard" in Light of Recent Toxicological Findings.* Chem Res Toxicol, 2017. **30**(1): p. 469-485.

11. Nikota, J., et al., *Role of Interleukin-1 and STAT signaling in carbon nanotube-induced pulmonary fibrosis in mice.* Part Fibre. Toxicol, 2017.

 He, X., et al., Single-Walled Carbon Nanotubes Induce Fibrogenic Effect by Disturbing Mitochondrial Oxidative Stress and Activating NF-kappaB Signaling. J Clin Toxicol, 2012. Suppl 5.
 Sohaebuddin, S.K., et al., Nanomaterial cytotoxicity is composition, size, and cell type

dependent. Part Fibre Toxicol, 2010. 7: p. 22.

14. Hussain, S., et al., *Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells.* Part Fibre Toxicol, 2010. **7**: p. 10.

15. Koltermann-Jülly, J., et al., *Appearance of Alveolar Macrophage Subpopulations in Correlation With Histopathological Effects in Short-Term Inhalation Studies With Biopersistent (Nano)Materials.* Toxicologic Pathology, 2020. **OnlineFirst**.

16. Nymark, P., et al., *A Data Fusion Pipeline for Generating and Enriching Adverse Outcome Pathway Descriptions.* Toxicol Sci, 2018. **162**(1): p. 264-275.

17. Modrzynska, J., et al., *Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice.* Part Fibre Toxicol, 2018. **15**(1): p. 2.

18. Jacobsen, N.R., et al., *Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells.* Environ Mol Mutagen, 2008. **49**(6): p. 476-87.

19. Heinrich U, F.R., Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, et al., *Chronic Inhalation Exposure of Wistar Rats and 2 Different Strains of Mice to Diesel-Engine Exhaust, Carbon-Black, and Titanium-Dioxide.* Inhalation Toxicology, 1995. **7**(4): p. 533–556.

20. Jacobsen, N.R., et al., *Increased mutant frequency by carbon black, but not quartz, in the lacZ and cll transgenes of muta mouse lung epithelial cells.* Environ Mol Mutagen, 2007. **48**(6): p. 451-61.

21. Jacobsen, N.R., et al., *Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black.* Environ Mol Mutagen, 2011. **52**(4): p. 331-7.

22. Knaapen, A.M., et al., *Inhaled particles and lung cancer. Part A: Mechanisms.* Int. J. Cancer, 2004. **109**(6): p. 799-809.

23. Saber, A.T., et al., *Commentary: the chronic inhalation study in rats for assessing lung cancer risk may be better than its reputation.* Part Fibre Toxicol, 2019. **16**(1): p. 44.

24. Jacobsen, N.R., et al., *Diesel exhaust particles are mutagenic in FE1-MutaMouse lung epithelial cells.* Mutat Res, 2008. **641**(1-2): p. 54-7.

25. Smith, M.T., et al., *Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis.* Environ Health Perspect, 2016. **124**(6): p. 713-21.

26. < Mohr 2005 mésothéliome pleural.pdf>.

27. Bononi, A., et al., Latest developments in our understanding of the pathogenesis of mesothelioma and the design of targeted therapies. Expert Rev Respir Med, 2015. 9(5): p. 633-54.
28. Kuempel, E.D., et al., Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol, 2017. 47(1): p. 1-58.

29. Chernova, T., et al., Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf). Curr Biol, 2017. **27**(21): p. 3302-3314 e6.

30. Kohonen, P., et al., A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury. Nat Commun, 2017. 8: p. 15932.

31. Bourdon, J.A., et al., *Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver.* Part Fibre Toxicol, 2012. **9**: p. 5.

32. Bengtson, S., et al., *Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide.* PLoS One, 2017. **12**(6): p. e0178355.

33. Nikota, J., et al., *Meta-analysis of transcriptomic responses as a means to identify pulmonary disease outcomes for engineered nanomaterials.* Part Fibre Toxicol, 2016. **13**(1): p. 25.

34. Williams, A. and S. Halappanavar, *Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials.* Beilstein. J. Nanotechnol, 2015. **6**: p. 2438-2448.

35. Williams, A. and S. Halappanavar, *Application of bi-clustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials.* Data Brief, 2017. **15**: p. 933-940.

36. Rahman, L., et al., *Multi-walled carbon nanotube-induced genotoxic, inflammatory and profibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis.* Mutat Res, 2017. **823**: p. 28-44.

37. Bornholdt, J., et al., *Identification of Gene Transcription Start Sites and Enhancers Responding to Pulmonary Carbon Nanotube Exposure in Vivo.* ACS Nano, 2017. **11**(4): p. 3597-3613.

38. Labib, S., et al., *Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes.* Part Fibre Toxicol, 2016. **13**: p. 15.

39. Poulsen, S.S., et al., *MWCNTs* of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol, 2015. **284**(1): p. 16-32.

40. Poulsen, S.S., et al., *Transcriptomic analysis reveals novel mechanistic insight into murine biological responses to multi-walled carbon nanotubes in lungs and cultured lung epithelial cells.* PLoS. One, 2013. **8**(11): p. e80452.

41. Halappanavar, S., et al., *Ranking of nanomaterial potency to induce pathway perturbations associated with lung responses.* NanoImpact, 2019. **14**.